Silicon Quantum Dots for Photovoltaics: A Review

Controlling size and shape of materials on the nanoscale allows to engineer their physical properties. Indeed nanomaterials offer unique opportunities in engineering, microelectronics, life-science, and renewable energies. Conversion of sunlight to electricity is assumed to be of major importance for the supply of electrical energy for future generations. The actual photovoltaic market is dominated by silicon solar cells. However, to address future needs in electricity in the order of ~30 Terawatts, the cost of solar energy will have to be significantly lower and the efficiency will have to be increased significantly with respect to actual values. With these preconditions it is understandable that the interest in exploring the properties of silicon nanostructures in solar cells is enormously increased. Especially, since for silicon, a similar revolution already happened regarding the shrinkage of the size of transistors accompanied by an exponential increase in speed. The review summarizes the most important properties of silicon quantum dots (Si-QDs), gives an overview of solar cell concepts, in which Si-QDs can play a role and indicates major achievements to be envisioned for another technological revolution based on silicon technology.

[1]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[2]  Antonio Luque,et al.  Electron―phonon energy transfer in hot―carrier solar cells , 2010 .

[3]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[4]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[5]  B. Richards,et al.  Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .

[6]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[7]  Thomas N. Theis,et al.  Electroluminescence studies in silicon dioxide films containing tiny silicon islands , 1984 .

[8]  Gavin Conibeer,et al.  Silicon nanostructures for third generation photovoltaic solar cells , 2006 .

[9]  Room temperature luminescence from (Si/SiO2)n (n=1,2,3) multilayers grown in an industrial low-pressure chemical vapor deposition reactor , 2000 .

[10]  Francesco Priolo,et al.  Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices , 2000 .

[11]  A. Galeckas,et al.  Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2 , 1999 .

[12]  M. Green,et al.  Improving solar cell efficiencies by down-conversion of high-energy photons , 2002 .

[13]  D. Narducci,et al.  Encapsulating Eu3+ complex doped layers to improve Si‐based solar cell efficiency , 2009 .

[14]  C. Lam,et al.  Enhanced conduction and minimized charge trapping in electrically alterable read‐only memories using off‐stoichiometric silicon dioxide films , 1984 .

[15]  L. D. Negro,et al.  Stimulated emission in nanocrystalline silicon superlattices , 2003 .

[16]  M. Green,et al.  Study of silicon quantum dots in a SiO2 matrix for energy selective contacts applications , 2010 .

[17]  B. Richards,et al.  Increased mc-Si Module Efficiency Using Fluorescent Organic Dyes: A Ray-Tracing Study , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[18]  M. Green,et al.  Application of Ge quantum wells fabricated by laser annealing as energy selective contacts for hot-carrier solar cells , 2012, PVSC 2012.

[19]  R. Nahory,et al.  Valley-Orbit Splitting of Free Excitons? The Absorption Edge of Si , 1970 .

[20]  W. C. Sinke,et al.  A Strategic Research Agenda for Photovoltaic Solar Energy Technology , 2007 .

[21]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[22]  M. Alsalhi,et al.  Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle , 2007 .

[23]  J. Keränen,et al.  Substrate-dependent crystallization and enhancement of visible photoluminescence in thermal annealing of Si/SiO2 superlattices , 2001 .

[24]  A comparative study of the photoluminescence properties of a-SiOx:H film and silicon nanocrystallites , 2000 .

[25]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[26]  Kanemitsu Luminescence properties of nanometer-sized Si crystallites: Core and surface states. , 1994, Physical review. B, Condensed matter.

[27]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[28]  B. Mahmoudi,et al.  Porous silicon antireflection layer for solar cells using metal‐assisted chemical etching , 2008 .

[29]  U. Zhokhavets,et al.  The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells , 2005 .

[30]  P. F. Szajowski,et al.  Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals , 1993, Science.

[31]  C. Lin,et al.  Quantum size effects on photoluminescence from Si nanocrystals in PECVD silicon-rich-oxide , 1997 .

[32]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[33]  M. Green,et al.  Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells , 2009 .

[34]  J. C. Muller,et al.  Silicon nanocrystals as light converter for solar cells , 2004 .

[35]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[36]  T. Ryhänen,et al.  Electrochemical photovoltaic cells—review of recent developments , 2010 .

[37]  Gavin Conibeer,et al.  Selective energy contacts for hot carrier solar cells , 2008 .

[38]  M. Schwartzkopff,et al.  BREAKDOWN OF THE K-CONSERVATION RULE IN SI NANOCRYSTALS , 1998 .

[39]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[40]  D. Mariotti,et al.  A hybrid heterojunction based on fullerenes and surfactant-free, self-assembled, closely packed silicon nanocrystals , 2010 .

[41]  I. Balberg,et al.  Fundamental transport processes in ensembles of silicon quantum dots , 2007 .

[42]  A. Pérez‐Rodríguez,et al.  Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2 , 2002 .

[43]  L. Canham,et al.  Identification of radiative transitions in highly porous silicon , 1993 .

[44]  F. Priolo,et al.  Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO 2 , 2003 .

[45]  M. Green,et al.  Ultra-thin silicon nitride barrier implementation for Si nano-crystals embedded in amorphous silicon carbide matrix with hybrid superlattice structure , 2011 .

[46]  A. Feltrin,et al.  Material considerations for terawatt level deployment of photovoltaics , 2008 .

[47]  Gavin Conibeer,et al.  Hot carrier solar cells operating under practical conditions , 2009 .

[48]  Christoph J. Brabec,et al.  Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies , 2014 .

[49]  S. R. Forrest,et al.  Organic‐on‐inorganic semiconductor contact barrier devices , 1982 .

[50]  F. Priolo,et al.  Electroluminescence of silicon nanocrystals in MOS structures , 2002 .

[51]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[52]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[53]  Harry A. Atwater,et al.  Defect‐related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2 , 1996 .

[54]  M. Green,et al.  Quantitative evaluation of boron-induced disorder in multilayers containing silicon nanocrystals in an oxide matrix designed for photovoltaic applications. , 2010, Optics express.

[55]  Lorenzo Pavesi,et al.  Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices , 2009 .

[56]  Gavin Conibeer,et al.  Silicon quantum dot nanostructures for tandem photovoltaic cells , 2008 .

[57]  Chang Oh Kim,et al.  Doping- and size-dependent photovoltaic properties of p-type Si-quantum-dot heterojunction solar cells: correlation with photoluminescence , 2010 .

[58]  Martin A. Green,et al.  Particle conservation in the hot‐carrier solar cell , 2005 .

[59]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[60]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[61]  A. Sa’ar,et al.  Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy , 2004 .

[62]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[63]  B. Richards Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers , 2006 .

[64]  J. I. Davies,et al.  Hot carrier energy loss rates in GaInAs/InP quantum wells , 1988 .

[65]  D. J. Lockwood,et al.  Quantum confined luminescence in Si/SiO2 superlattices. , 1996, Physical review letters.

[66]  Influence of the temperature on the photoluminescence of silicon clusters embedded in a silicon oxide matrix , 2003 .

[67]  I. Crupi,et al.  Light absorption and electrical transport in Si:O alloys for photovoltaics , 2010 .

[68]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[69]  W.G.J.H.M. van Sark,et al.  Modeling improvement of spectral response of solar cells by deployment of spectral converters containing semiconductor nanocrystals , 2004 .

[70]  G Van Tendeloo,et al.  Classification and control of the origin of photoluminescence from Si nanocrystals. , 2008, Nature nanotechnology.

[71]  M. Green,et al.  Correlation between stress and carrier nonradiative recombination for silicon nanocrystals in an oxide matrix , 2011, Nanotechnology.

[72]  S. Binetti,et al.  Rare earth organic complexes as down-shifters to improve Si-based solar cell efficiency , 2011 .

[73]  Lorenzo Pavesi,et al.  Dynamics of stimulated emission in silicon nanocrystals , 2003 .

[74]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[75]  M. Stutzmann,et al.  Electronic transport in phosphorus-doped silicon nanocrystal networks. , 2008, Physical review letters.

[76]  J. Barreto,et al.  Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition , 2006 .

[77]  W. Carlos,et al.  Defect studies in as-deposited and processed nanocrystalline Si/SiO2 structures , 1998 .

[78]  Leigh T. Canham,et al.  Properties of Porous Silicon , 1998 .

[79]  C. del Cañizo,et al.  Crystalline silicon solar module technology: Towards the 1 € per watt‐peak goal , 2009 .

[80]  P. Prasad,et al.  Organic-thin-film-coated solar cells: Energy transfer between surface pyrene molecules and the silicon semiconductor substrate , 1984 .

[81]  M. Stutzmann,et al.  Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals , 2009 .

[82]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[83]  A. Uhlir Electrolytic shaping of germanium and silicon , 1956 .

[84]  Lorenzo Pavesi,et al.  Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices , 2008 .

[85]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[86]  Formation and photoluminescence of Si quantum dots in SiO2/Si3N4 hybrid matrix for all-Si tandem solar cells , 2010 .

[87]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[88]  E. Rabani,et al.  Heavily Doped Semiconductor Nanocrystal Quantum Dots , 2011, Science.

[89]  Howard M. Branz,et al.  Exciton splitting and carrier transport across the amorphous-silicon/polymer solar cell interface , 2006 .

[90]  Y. Kanemitsu,et al.  Photoluminescence mechanism in surface-oxidized silicon nanocrystals , 1997 .

[91]  H. Hofmeister,et al.  Raman scattering and photoluminescence from Si nanoparticles in annealed SiO x thin films , 2002 .

[92]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[93]  J. Valenta,et al.  Narrow luminescence linewidth of a silicon quantum dot. , 2005, Physical review letters.

[94]  Lorenzo Pavesi,et al.  Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers , 2009 .

[95]  T. Maruyama,et al.  Solar cell module colored with fluorescent plate , 2000 .

[96]  K. McIntosh,et al.  Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down‐shifting: ray‐tracing simulations , 2007 .

[97]  Yong Wang,et al.  Quantum Dots: A Variety Of New Applications , 2014 .

[98]  Gavin Conibeer,et al.  Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices , 2008 .

[99]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[100]  R. T. Ross,et al.  Efficiency of hot-carrier solar energy converters , 1982 .

[101]  H. Atwater,et al.  Size-dependent electron-hole exchange interaction in Si nanocrystals , 2000 .

[102]  P. Würfel,et al.  Solar energy conversion with hot electrons from impact ionisation , 1997 .

[103]  Thomas Geiger,et al.  Built-in quantum dot antennas in dye-sensitized solar cells. , 2010, ACS nano.

[104]  Xiaodong Pi,et al.  Spin-coating silicon-quantum-dot ink to improve solar cell efficiency , 2011 .

[105]  Jury V. Vandyshev,et al.  Blue emission in porous silicon: Oxygen-related photoluminescence. , 1994, Physical review. B, Condensed matter.

[106]  U. Kortshagen,et al.  Hybrid solar cells from P3HT and silicon nanocrystals. , 2009, Nano letters.

[107]  M. Miu,et al.  The optical properties of porous silicon , 2008, 2008 International Nano-Optoelectronics Workshop.

[108]  Mher Ghulinyan,et al.  Silicon solar cells with nano-crystalline silicon down shifter: experiment and modeling , 2010, Optics + Photonics for Sustainable Energy.