Laser Probing of the Rotational Cooling of Molecular Ions by Electron Collisions.

We present state-selected measurements of rotational cooling and excitation rates of CH^{+} molecular ions by inelastic electron collisions. The experiments are carried out at a cryogenic storage ring, making use of a monoenergetic electron beam at matched velocity in combination with state-sensitive laser dissociation of the CH^{+} ions for simultaneous monitoring of the rotational level populations. Employing storage times of up to 600 s, we create conditions where electron-induced cooling to the J=0 ground state dominates over radiative relaxation, allowing for the experimental determination of inelastic electron collision rates to benchmark state-of-the-art theoretical calculations. On a broader scale, our experiments pave the way to probe inelastic electron collisions for a variety of molecular ions relevant in various plasma environments.

[1]  M. Grieser,et al.  Transverse electron cooling of heavy molecular ions , 2021 .

[2]  H. Kreckel,et al.  An approach for multi-color action spectroscopy of highly excited states of H3+ , 2021 .

[3]  O. Motapon,et al.  Dissociative Recombination of CH+ Molecular Ion Induced by Very Low Energy Electrons , 2019, Atoms.

[4]  D. A. Orlov,et al.  Quantum-state–selective electron recombination studies suggest enhanced abundance of primordial HeH+ , 2019, Science.

[5]  J. Tennyson,et al.  Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method , 2019, Atoms.

[6]  Brett A. McGuire,et al.  2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules , 2018, The Astrophysical Journal Supplement Series.

[7]  K. Bartschat Electron collisions—experiment, theory, and applications , 2018, Journal of Physics B: Atomic, Molecular and Optical Physics.

[8]  S. Schlemmer,et al.  The First Laboratory Detection of Vibration-rotation Transitions of 12CH+ and 13CH+ and Improved Measurement of Their Rotational Transition Frequencies , 2018, The Astrophysical journal.

[9]  J. Tennyson,et al.  Electron-impact excitation of diatomic hydride cations II: OH + and SH + , 2018, 1802.07566.

[10]  Daniel Foreman-Mackey,et al.  Data Analysis Recipes: Using Markov Chain Monte Carlo , 2017, 1710.06068.

[11]  J. Tennyson,et al.  R-matrix study of electron impact excitation and dissociation of CH+ ions , 2017 .

[12]  M. Gatchell,et al.  Rotationally Cold OH^{-} Ions in the Cryogenic Electrostatic Ion-Beam Storage Ring DESIREE. , 2017, Physical review letters.

[13]  M. Grieser,et al.  Radiative Rotational Lifetimes and State-Resolved Relative Detachment Cross Sections from Photodetachment Thermometry of Molecular Anions in a Cryogenic Storage Ring. , 2017, Physical review letters.

[14]  J. Tennyson,et al.  State-to-state chemistry and rotational excitation of CH+ in photon-dominated regions. , 2017, Monthly notices of the Royal Astronomical Society.

[15]  M. Kushner,et al.  Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology , 2016, Proceedings of the National Academy of Sciences.

[16]  Universit'e catholique de Louvain,et al.  The cryogenic storage ring CSR. , 2016, The Review of scientific instruments.

[17]  M. Grieser,et al.  Photodissociation of an Internally Cold Beam of CH^{+} Ions in a Cryogenic Storage Ring. , 2016, Physical review letters.

[18]  H. Schmidt,et al.  Electrostatic storage rings for atomic and molecular physics , 2015 .

[19]  J. Tennyson,et al.  Electron-impact excitation of diatomic hydride cations – I. HeH+, CH+, ArH+ , 2015, 1510.05101.

[20]  G. Ferland,et al.  Accurate determination of the free-free Gaunt factor; I - non-relativistic Gaunt factors , 2014, 1407.5048.

[21]  Jonathan Tennyson,et al.  BASECOL2012: A collisional database repository and web service within the Virtual Atomic and Molecular Data Centre (VAMDC) , 2013 .

[22]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[23]  H. Liszt Rotational excitation of simple polar molecules by H2 and electrons in diffuse clouds , 2011, 1111.5231.

[24]  J. Tennyson,et al.  Rotational cooling of HD+ molecular ions by superelastic collisions with electrons. , 2009, Physical review letters.

[25]  R. Wester,et al.  Photodissociation spectroscopy of stored CH+ and CD+ ions: analysis of the b 3Sigma(-)-a 3Pi system. , 2007, The Journal of chemical physics.

[26]  H. Liebermann,et al.  Insight into the Rydberg states of CH. , 2007, The Journal of chemical physics.

[27]  D. Bohme,et al.  Ions in space. , 2007, Mass spectrometry reviews.

[28]  P. Rosmus,et al.  Dipole moments and orientation polarizabilities of diatomic molecular ions for precision atomic mass measurement , 2007 .

[29]  S. Schiller,et al.  Rovibrational spectroscopy of trapped molecular hydrogen ions at millikelvin temperatures , 2006 .

[30]  W. Szajna,et al.  New analysis of the Douglas-Herzberg system (A1Π- X1Σ+) in the CH+ ion radical , 2006 .

[31]  M. Hemert,et al.  CH+ potential energy curves and photodissociation cross-section , 2004 .

[32]  A. S. Jaroshevich,et al.  Cold Electrons from Cryogenic GaAs Photocathodes: Energetic and Angular Distributions , 2003 .

[33]  Carl J. Williams,et al.  Photodissociation spectroscopy of stored CH+ ions: Detection, assignment, and close-coupled modeling of near-threshold Feshbach resonances , 2002 .

[34]  J. Tennyson,et al.  Electron-impact rotational excitation of linear molecular ions , 2001 .

[35]  J. Tennyson,et al.  Electron-impact rotational excitation of CH+ , 1999 .

[36]  D. Flower Rotational excitation of HCO+ by H2 , 1999 .

[37]  J. Tennyson,et al.  Calculated rotational and vibrational excitation rates for electron-HeH+ collisions , 1998 .

[38]  R. Wester,et al.  NEAR-THRESHOLD PHOTODISSOCIATION OF COLD CH+ IN A STORAGE RING , 1998 .

[39]  Wolf,et al.  Dissociative recombination of CH+: Cross section and final states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  P. Bernath,et al.  Spectra of Atoms and Molecules , 1996 .

[41]  M. Grieser,et al.  Electron cooling and recombination experiments with an adiabatically expanded electron beam , 1996 .

[42]  Dalgarno,et al.  Electron-impact excitation of molecular ions. , 1989, Physical review. A, General physics.

[43]  A. S. Dickinson,et al.  Electron collisional excitation of interstellar molecular ions , 1981 .

[44]  M. Narayan,et al.  Rotational excitation of molecular ions by electron impact under interstellar conditions , 1981 .

[45]  I. Kusunoki,et al.  Triplet CH+(CD+) emission from chemiluminescent ion–molecule reaction C+ (4P)+H2 (D2) , 1980 .

[46]  G. I. Budker,et al.  Electron cooling and new possibilities in elementary particle physics , 1978 .

[47]  S. Chu,et al.  Rotational excitation of CH+ by electron impact , 1974 .

[48]  J. Black Molecules in harsh environments , 1998 .

[49]  V. D. Ob''edkov,et al.  ROTATIONAL AND VIBRATIONAL EXCITATION OF MOLECULAR IONS BY ELECTRONS. , 1968 .