Petrogenesis of the Carboniferous Ghaleh-Dezh metagranite, Sanandaj–Sirjan zone, Iran: constraints from new zircon U–Pb and 40Ar/39Ar ages and Sr–Nd isotopes

Abstract The Ghaleh-Dezh metagranites in the northern Sanandaj–Sirjan Zone (SaSZ) in western Iran are found in a 0.5 km long by 0.3 km wide unit emplaced within the older Precambrian basement. New zircon U–Pb ages confirm that crystallization and emplacement of the protolith of the metagranites occurred at 312 ± 10 Ma and 298 ± 17 Ma in the Upper Carboniferous (Pennsylvanian) – Early Permian, which is consistent with the ages of recently discovered Palaeozoic granites in the northern SaSZ. The studied metagranitic body has been metamorphosed at lower greenschist facies and deformed in ductile–brittle regime due to subsequent reheating events during the Mesozoic. The rocks are metaluminous to slightly peraluminous granites with an A2-type affinity. Initial 87Sr/86Sr ratios and εNd(t) contents vary from 0.7037 to 0.7130 and −0.70 to 0.34, respectively. 143Nd/144Nd(i) values for the granitic rocks are fairly uniform at ∼0.5123. The geochemical and isotopic evidence indicates that these rocks were generated from a mantle magma with crustal contamination and fractional crystallization. Rb–Sr isochron and 40Ar/39Ar K-feldspar ages are 274 Ma and 60–70 Ma, respectively. The older event, c. 270 Ma, was likely related to the opening of Neotethys, whereas the younger ages likely relate to collisional events in the region during the closure of Neotethys.

[1]  H. Azizi,et al.  Zircon U-Pb dating, mineralogy and geochemical characteristics of the gabbro and gabbro-diorite bodies, Boein–Miandasht, western Iran , 2020, International Geology Review.

[2]  H. Azizi,et al.  Jurassic igneous rocks of the central Sanandaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc , 2019, Terra Nova.

[3]  H. Azizi,et al.  Age, geochemistry, and emplacement of the ~40-Ma Baneh granite–appinite complex in a transpressional tectonic regime, Zagros suture zone, northwest Iran , 2019 .

[4]  Qiang Shi,et al.  Late Paleocene–early Eocene granitoids in the Jiamusi Massif, NE China: Zircon U–Pb ages, geochemistry, and tectonic implications , 2019 .

[5]  D. Avigad,et al.  The lower crust of the Northern broken edge of Gondwana: Evidence for sediment subduction and syn-Variscan anorogenic imprint from zircon U-Pb-Hf in granulite xenoliths , 2018, Gondwana Research.

[6]  H. Azizi,et al.  The Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, northwest Iran: Mantle plume or active margin? , 2018 .

[7]  Yunpeng Dong,et al.  U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan Zone of western Iran , 2018 .

[8]  H. Azizi,et al.  A- and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic post-collisional magmatism , 2018 .

[9]  H. Azizi,et al.  A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic , 2017 .

[10]  R. Shinjo,et al.  Mesozoic-Cenozoic mafic magmatism in Sanandaj-Sirjan Zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from Middle Jurassic and Late Eocene gabbros , 2017 .

[11]  F. Neubauer,et al.  Geochemical and isotopic evidence for Carboniferous rifting: mafic dykes in the central Sanandaj-Sirjan zone (Dorud-Azna, West Iran) , 2017 .

[12]  P. Robinson,et al.  Textures and high field strength elements in hydrothermal magnetite from a skarn system: Implications for coupled dissolution-reprecipitation reactions , 2017 .

[13]  H. Azizi,et al.  Zircon U–Pb ages and Sr–Nd isotope ratios for the Sirstan granitoid body, NE Iraq: Evidence of magmatic activity in the Middle Cretaceous Period , 2017 .

[14]  G. Topuz,et al.  Variscan orogeny in the Black Sea region , 2017, International Journal of Earth Sciences.

[15]  F. Neubauer,et al.  In-situ zircon U-Pb age and Hf-O isotopic constraints on the origin of the Hasan-Robat A-type granite from Sanandaj–Sirjan zone, Iran: implications for reworking of Cadomian arc igneous rocks , 2017, Mineralogy and Petrology.

[16]  A. Nutman,et al.  The Sanandaj-Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U-Pb evidence of late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis , 2016 .

[17]  T. Zhao,et al.  Age and geochemistry of the early Mesoproterozoic A-type granites in the southern margin of the North China Craton: Constraints on their petrogenesis and tectonic implications , 2016 .

[18]  F. Neubauer,et al.  40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogen , 2016 .

[19]  F. Bea,et al.  Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites , 2016 .

[20]  R. Oberhänsli,et al.  Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey – Evidence for southward subduction of Paleotethys , 2016 .

[21]  D. Wyman,et al.  2090–2070 Ma A-type granitoids in Zanhuang Complex: Further evidence on a Paleoproterozoic rift-related tectonic regime in the Trans-North China Orogen , 2016 .

[22]  B. Wernicke,et al.  The Neotethyan Sanandaj‐Sirjan zone of Iran as an archetype for passive margin‐arc transitions , 2016 .

[23]  G. Pe‐Piper,et al.  Systematic mineralogical diversity in A-type granitic intrusions: Control of magmatic source and geological processes , 2016 .

[24]  H. Azizi,et al.  U–Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj–Sirjan Zone, Iran: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic , 2015 .

[25]  H. Fan,et al.  Geochronology, mineralogy and geochemistry of alkali-feldspar granite and albite granite association from the Changyi area of Jiao-Liao-Ji Belt: Implications for Paleoproterozoic rifting of eastern North China Craton , 2015 .

[26]  Yunpeng Dong,et al.  Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser-ablation ICP-MS zircon ages and geochemistry , 2015 .

[27]  H. Azizi,et al.  Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (TTG) complex in the northern Sanandaj–Sirjan zone, northwest Iran: Evidence for Late Jurassic arc–continent collision , 2015 .

[28]  G. Stampfli,et al.  Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation , 2015, International Journal of Earth Sciences.

[29]  T. Zhao,et al.  Geochronological and geochemical constraints on the petrogenesis of the early Paleoproterozoic potassic granite in the Lushan area, southern margin of the North China Craton , 2014 .

[30]  A. Cambeses,et al.  Unraveling sources of A-type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt , 2014 .

[31]  A. Nutman,et al.  Gondwanan Eoarchean–Neoproterozoic ancient crustal material in Iran and Turkey: zircon U–Pb–Hf isotopic evidence , 2014 .

[32]  C. Fergusson,et al.  Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran , 2014 .

[33]  M. Moayyed,et al.  Petrochemical and Sr-Nd isotope investigations of A-type granites in the east of Misho, NW Iran , 2013, Arabian Journal of Geosciences.

[34]  H. Azizi,et al.  Juvenile granite in the Sanandaj–Sirjan Zone, NW Iran: Late Jurassic–Early Cretaceous arc–continent collision , 2013 .

[35]  L. Beccaluva,et al.  Geochemistry and petrology of the Kermanshah ophiolites (Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean , 2013 .

[36]  M. Berberian,et al.  Tectono‐Plutonic Episodes in Iran , 2013 .

[37]  M. Khatib,et al.  Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny , 2013 .

[38]  B. Chappell,et al.  Peraluminous I-type granites , 2012 .

[39]  S. Alirezaei,et al.  Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record of the Gondwana break-up in Iran , 2012 .

[40]  R. Dall’Agnol,et al.  IGCP Project 510 “A-type Granites and Related Rocks through Time”: Project vita, results, and contribution to granite research , 2012 .

[41]  Zhenhua Zhou,et al.  Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn–Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting , 2012 .

[42]  Xian‐Hua Li,et al.  Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China , 2011 .

[43]  M. Tiepolo,et al.  Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan Zone, Iran , 2011 .

[44]  Bertrand Meyer,et al.  Zagros orogeny: a subduction-dominated process , 2011, Geological Magazine.

[45]  F. Corfu,et al.  U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran , 2011 .

[46]  R. Deevsalar,et al.  The field and microstructural study of Malayer plutonic rocks,west of Iran , 2011 .

[47]  F. Bea,et al.  Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: Evidence for Variscan magmatism in a supposedly Cimmerian superterrane , 2011 .

[48]  M. Faure,et al.  Middle Carboniferous crustal melting in the Variscan Belt: New insights from U–Th–Pbtot. monazite and U–Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central) , 2010 .

[49]  A. Garcia‐Casco,et al.  Metamorphic evolution of subducted hot oceanic crust (La Corea Mélange, Cuba) , 2010, American Journal of Science.

[50]  A. Saki Proto-Tethyan remnants in northwest Iran: Geochemistry of the gneisses and metapelitic rocks , 2010 .

[51]  S. Morad,et al.  HYDROTHERMAL ALTERATION OF MAGMATIC TITANITE: EVIDENCE FROM PROTEROZOIC GRANITIC ROCKS, SOUTHEASTERN SWEDEN , 2009 .

[52]  M. Khalili,et al.  Petrography and geochemistry of mylonitic granite from Ghaleh-Dezh, NW Azna, Sanandaj-Sirjan zone, Iran , 2009 .

[53]  Kazuhiro Suzuki,et al.  Petrology and CHIME geochronology of Pan-African high K and Sr/Y granitoids in the Nkambe area, Cameroon , 2008 .

[54]  J. Walker,et al.  U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement , 2008 .

[55]  D. Boutelier,et al.  Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain , 2008 .

[56]  van Hinsbergen Djj,et al.  No vertical axis rotations during Neogene transpressional orogeny in the NE Gobi Altai: coinciding Mongolian and Eurasian early Cretaceous apparent polar wander paths , 2007 .

[57]  S. Dargahi,et al.  Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction , 2007 .

[58]  W. Griffin,et al.  Resetting of the U–Pb Zircon System in Cambro-Ordovician Intrusives of the Deep Freeze Range, Northern Victoria Land, Antarctica , 2007 .

[59]  R. Handler,et al.  40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China , 2006 .

[60]  S. Wilde,et al.  A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence , 2006 .

[61]  M. B. Ohoud,et al.  Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites , 2005 .

[62]  A. Willner Pressure–Temperature Evolution of a Late Palaeozoic Paired Metamorphic Belt in North–Central Chile (34°–35°30′S) , 2005 .

[63]  L. Jolivet,et al.  Convergence history across Zagros (Iran): constraints from collisional and earlier deformation , 2005 .

[64]  D. Weis,et al.  Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS , 2004 .

[65]  Edgar Dachs,et al.  PET: Petrological Elementary Tools for Mathematica®: an update , 2004, Comput. Geosci..

[66]  A. Hofmann,et al.  Neodymium and Strontium Isotope Data for USGS Reference Materials BCR‐1, BCR‐2, BHVO‐1, BHVO‐2, AGV‐1, AGV‐2, GSP‐1, GSP‐2 and Eight MPI‐DING Reference Glasses , 2003 .

[67]  C. Miller,et al.  Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance , 2003 .

[68]  M. Stein,et al.  The Petrogenesis of A-type Magmas from the Amram Massif, Southern Israel , 2003 .

[69]  A. Saunders,et al.  Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas , 2002 .

[70]  S. Wilde,et al.  A-type granites in northeastern China: age and geochemical constraints on their petrogenesis , 2002 .

[71]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[72]  P. King,et al.  Are A‐type granites the high‐temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite , 2001 .

[73]  P. Matte The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review , 2001 .

[74]  R. Trumbull,et al.  A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components , 2000 .

[75]  C. Fergusson,et al.  Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, western Iran , 2000 .

[76]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[77]  R. Dall’Agnol,et al.  An Experimental Study of a Lower Proterozoic A-type Granite from theEastern Amazonian Craton, Brazil , 1999 .

[78]  B. Jahn,et al.  Crustal evolution of southeastern China: Nd and Sr isotopic evidence , 1998 .

[79]  A. P. Douce,et al.  Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids , 1997 .

[80]  P. King,et al.  Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia , 1997 .

[81]  I. Bindeman,et al.  A Stable Isotope Study of Anorogenic Magmatism in East Central Asia , 1996 .

[82]  W. Collins,et al.  Derivation of A-type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia , 1996 .

[83]  J. Wijbrans,et al.  Argon geochronology of small samples using the Vulkaan argon laserprobe , 1995 .

[84]  T. Green Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system , 1995 .

[85]  E. Watson,et al.  A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy , 1994 .

[86]  John Casserly,et al.  Strontium diffusion kinetics in plagioclase feldspars , 1994 .

[87]  M. Alavi TECTONICS OF THE ZAGROS OROGENIC BELT OF IRAN - NEW DATA AND INTERPRETATIONS , 1994 .

[88]  A. Kerr,et al.  Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada , 1993 .

[89]  S. Feinstein,et al.  A major Late Devonian-Early Carboniferous (Hercynian) Thermotectonic event at the NW Margin of the A , 1992 .

[90]  R. S. Morrison,et al.  Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway R , 1992 .

[91]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[92]  B. Giletti Rb and Sr diffusion in alkali feldspars, with implications for cooling histories of rocks , 1991 .

[93]  R. Creaser,et al.  A-type granites revisited: Assessment of a residual-source model , 1991 .

[94]  P. Piccoli,et al.  Tectonic discrimination of granitoids , 1989 .

[95]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[96]  P. Matte Tectonics and plate tectonics model for the Variscan belt of Europe , 1986 .

[97]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[98]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[99]  W. Collins,et al.  Nature and origin of A-type granites with particular reference to southeastern Australia , 1982 .

[100]  G. Wasserburg,et al.  Precise determination of SmNd ratios, Sm and Nd isotopic abundances in standard solutions☆ , 1981 .

[101]  M. Berberian,et al.  Towards a paleogeography and tectonic evolution of Iran: Reply , 1981 .

[102]  W. Dollase,et al.  Composition of plutonic muscovite; genetic implications , 1981 .

[103]  K. Marti,et al.  Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .

[104]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[105]  J. Stocklin Structural History and Tectonics of Iran: A Review , 1968 .

[106]  S. J. Shand Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits, with a Chapter on Meteorites , 1927 .

[107]  Xian‐Hua Li,et al.  Zircon U–Pb ages and Hf–O isotopic composition of migmatites from the Zanjan–Takab complex, NW Iran: Constraints on partial melting of metasediments , 2016 .

[108]  J. Santos,et al.  Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: geochronological and geochemical constraints , 2015 .

[109]  J. Ghalamghash,et al.  PETROGENESIS AND ZIRCON U-PB RADIOMETRIC DATING IN HERRIS GRANITE (NW SHABESTAR) EAST AZARBAIJAN PROVINCE , 2011 .

[110]  B. Frost,et al.  On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin , 2011 .

[111]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[112]  D. D. Vleeschouwer,et al.  Geological Society of America Abstracts with Programs , 2010 .

[113]  M. Alavi,et al.  Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution , 2004 .

[114]  C. Fergusson,et al.  Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran , 2003 .

[115]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[116]  D. Wayne,et al.  Physical and chemical response of zircons to deformation , 1988 .

[117]  W. Boynton Cosmochemistry of the rare earth elements: meteorite studies. , 1984 .

[118]  J. Anderson,et al.  Proterozoic anorogenic granite plutonism of North America , 1983 .

[119]  S. Taylor,et al.  Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey , 1976 .

[120]  K. Foland Ar40 diffusion in homogenous orthoclase and an interpretation of Ar diffusion in K-feldspars , 1974 .

[121]  B. Butler Chemical Study of Minerals from the Moine Schists of the Ardnamurchan Area, Argyllshire, Scotland , 1967 .

[122]  Eruptive Rocks: their Genesis, Composition, Classification, and their Relation to Ore-Deposits; with a Chapter on Meteorites , 1927, Nature.