The Dual-Band PolInSAR Method for Forest Parametrization

There are basically two methods for retrieving the ground and the canopy height from interferometric synthetic aperture radar (InSAR) in forested areas. The first method is based on the difference between InSAR height estimations from dual-band (DB) systems, typically operating at X- and P-bands HH. The second method is based on the modeling of the polarimetric (Pol) InSAR response along the forest vertical structure, typically at L- or P-band. This paper proposes the combination of both methods, so that the ground and total tree height estimations are improved and become available alongside the interferometric forest height with the usage of polarimetric data and the RVoG model adoption in both bands. In the proposed method (DB-PolInSAR), first, the ground phase is retrieved from the RVoG inversion through a straightforward line fit of the P-Band polarimetric data in the complex plane. Fixing the ground height coming from the previous P-band inversion and applying the RVoG model to the X-band interferometric data, we estimate the total tree height. Repeat-pass dual-polarimetric (HH and HV) P-band data and single-pass three-baseline HH X-band data acquired with the airborne OrbiSAR sensor of Bradar over the Amazon region of Urucu are used to demonstrate the proposed method. Comparisons between the dual-band PolInSAR and the dual-band single-polarization cases are performed for five different P-band single-baseline configurations. Better ground estimation over range is obtained with the proposed method. Furthermore, the three-antenna single-pass X-band data enabled a robust RVoG total tree height inversion.

[1]  Marco Lavalle,et al.  A Temporal Decorrelation Model for Polarimetric Radar Interferometers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[2]  I. Hajnsek,et al.  Potential of TanDEM-X for forest parameter estimation , 2010 .

[3]  João Roberto dos Santos,et al.  Eucalyptus Biomass and Volume Estimation Using Interferometric and Polarimetric SAR Data , 2010, Remote. Sens..

[4]  S. R. Cloude,et al.  The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[5]  M. Rombach,et al.  Description and applications of the multipolarized dual band OrbiSAR-1 InSAR sensor , 2003, 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695).

[6]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[7]  Marco Diani,et al.  Simulated analysis and optimization of a three-antenna airborne InSAR system for topographic mapping , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  Mark Sanford,et al.  Tropical forest biomass recovery using GeoSAR observations , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[9]  João R. Moreira,et al.  Long-Term Airborne DInSAR Measurements at X- and P-Bands: A Case Study on the Application of Surveying Geohazard Threats to Pipelines , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  Irena Hajnsek,et al.  Multi-baseline Pol-InSAR Forest Height Estimation in the presence of temporal decorrelation , 2010 .

[11]  Alberto Moreira,et al.  Estimation of the Minimum Number of Tracks for SAR Tomography , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Christian Wimmer,et al.  Surface and Ground Topography Determination in Tropical Rainforest Areas Using Airborne Interferometric SAR , 2001 .

[13]  J. Huynen Phenomenological theory of radar targets , 1970 .

[14]  L. Dutra,et al.  Tropical Forest Measurement by Interferometric Height Modeling and P-Band Radar Backscatter , 2005, Forest Science.

[15]  Irena Hajnsek,et al.  Quantification of Temporal Decorrelation Effects at L-Band for Polarimetric SAR Interferometry Applications , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[17]  Christian Wimmer,et al.  Combining dual-band capability and PolInSAR technique for forest ground and canopy estimation , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[18]  Nair Otavíano Aguiar,et al.  Pseudoescorpiões (Arachnida) da vegetação de sub-bosque da floresta primária tropical de terra firme (Coari, Amazonas, Brasil) , 2003 .

[19]  M. Rombach,et al.  Newest technology of mapping by using airborne interferometric synthetic aperture radar systems , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[20]  J. B. M. Sambatti,et al.  Assessing Forest Biomass and Exploration in the Brazilian Amazon with Airborne InSAR: an Alternative for REDD , 2012 .

[21]  Alberto Moreira,et al.  Coregistration of interferometric SAR images using spectral diversity , 2000, IEEE Trans. Geosci. Remote. Sens..

[22]  João Roberto dos Santos,et al.  Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest , 2003 .

[23]  Gregory P. Asner,et al.  Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data , 2002 .

[24]  Karlus Alexander Câmara de Macedo,et al.  Estimating a preliminary terrain model from the X-band InSAR and the RVOG model , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[25]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[26]  Stefano Tebaldini,et al.  Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L-Bands , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Fábio Guimarães Gonçalves,et al.  Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements , 2009 .

[28]  S. Hensley,et al.  The GeoSAR airborne mapping system , 2000, Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037].

[29]  João R. Moreira,et al.  Highly accurate and precise airborne single-pass interferometry for DEM generation over challenging terrain , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[30]  Mark L. Williams,et al.  GeoSAR and DBInSAR: combining "X" with "P" for tropical forest "C". , 2009 .

[31]  Marco Lavalle,et al.  Three-Baseline InSAR Estimation of Forest Height , 2014, IEEE Geoscience and Remote Sensing Letters.

[32]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[33]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[34]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Christian Wimmer,et al.  Monitoring under foliage with airborne SAR , 2015, 2015 IEEE Radar Conference.

[36]  Irena Hajnsek,et al.  TanDEM-X Pol-InSAR Performance for Forest Height Estimation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Irena Hajnsek,et al.  MULTIBASELINE POLARIMETRIC SAR INTERFEROMETRY FOREST HEIGHT INVERSION APPROACHES , 2011 .

[38]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .