A multi-temperature kinetic Ising model and the eigenvalues of some perturbed Jacobi matrices

In this paper we analyze the eigenvalues of some perturbed Jacobi matrices. The results contain as particular cases the known spectra of several classes of tridiagonal matrices studied recently. As a motivation, we discuss a three and a four-temperature kinetic Ising model that can be analyzed using some perturbed Jacobi matrices. The analytical results can also be used for the associated reaction-diffusion systems to solve for the particle density.

[1]  C. Kanzow,et al.  Bounds for the extremal eigenvalues of a class of symmetric tridiagonal matrices with applications , 2012 .

[2]  Jonas Rimas,et al.  On computing of arbitrary positive integer powers for one type of tridiagonal matrices , 2005, Appl. Math. Comput..

[3]  Said Kouachi,et al.  EIGENVALUES AND EIGENVECTORS OF TRIDIAGONAL MATRICES , 2006 .

[4]  José Roberto Castilho Piqueira,et al.  A modified epidemiological model for computer viruses , 2009, Appl. Math. Comput..

[5]  Abdelmalek Salem,et al.  Condensation of Determinants , 2007, 0712.0822.

[6]  J. Fraser,et al.  Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation. , 2010, Physical review letters.

[7]  H. T. Williams,et al.  Exact energy spectrum of a two-temperature kinetic Ising model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Carlos M. da Fonseca On the location of the eigenvalues of Jacobi matrices , 2006, Appl. Math. Lett..

[9]  T. Nakagawa,et al.  Exact results for a diffusion-limited pair annihilation process on a one-dimensional lattice , 2000 .

[10]  M. Yamashita,et al.  DECAY KINETICS OF LONG-LIVED PHOTOGENERATED KINKS IN AN MX CHAIN COMPOUND , 1997 .

[11]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[12]  Kroon,et al.  Diffusion-limited exciton fusion reaction in one-dimensional tetramethylammonium manganese trichloride (TMMC). , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  S. Kouachi Eigenvalues and eigenvectors of some tridiagonal matrices with non-constant diagonal entries , 2008 .

[14]  Jesús Gutiérrez-Gutiérrez Positive integer powers of complex symmetric circulant matrices , 2008, Appl. Math. Comput..

[15]  László Losonczi,et al.  Eigenvalues and eigenvectors of some tridiagonal matrices , 1992 .

[16]  Jesús Gutiérrez-Gutiérrez Powers of tridiagonal matrices with constant diagonals , 2008, Appl. Math. Comput..

[17]  Zia,et al.  Two-temperature kinetic Ising model in one dimension: Steady-state correlations in terms of energy and energy flux. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Exact dynamics of a reaction-diffusion model with spatially alternating rates. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Jesús Gutiérrez-Gutiérrez Powers of real persymmetric anti-tridiagonal matrices with constant anti-diagonals , 2008, Appl. Math. Comput..

[20]  S. Redner,et al.  A Kinetic View of Statistical Physics , 2010 .

[21]  R. Glauber Time‐Dependent Statistics of the Ising Model , 1963 .

[22]  C. M. da Fonseca,et al.  On the eigenvalues of some tridiagonal matrices , 2007 .

[23]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[24]  Jonas Rimas,et al.  On computing of arbitrary positive integer powers for one type of tridiagonal matrices of even order , 2005, Appl. Math. Comput..

[25]  Jonas Rimas,et al.  On computing of arbitrary positive integer powers for one type of even order skew-symmetric tridiagonal matrices with eigenvalues on imaginary axis - II , 2006, Appl. Math. Comput..

[26]  Mehmet Akbulak,et al.  Positive integer powers of certain complex tridiagonal matrices , 2013, Appl. Math. Comput..

[27]  Jonas Rimas,et al.  On computing of arbitrary positive integer powers for tridiagonal matrices with elements 1, 0, 0, ..., 0, 1 in principal and 1, 1, 1, ..., 1 in neighbouring diagonals - II , 2007, Appl. Math. Comput..

[28]  Ali Eftekhari,et al.  Nanostructured conductive polymers , 2010 .