Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study

[1]  B. López-Méndez,et al.  Microscale Thermophoresis and additional effects measured in NanoTemper Monolith instruments , 2021, European Biophysics Journal.

[2]  T. Jowitt,et al.  Interaction standards for biophysics: anti-lysozyme nanobodies , 2021, European Biophysics Journal.

[3]  O. Abián,et al.  Uncertainty in protein–ligand binding constants: asymmetric confidence intervals versus standard errors , 2021, European Biophysics Journal.

[4]  K. Gardner,et al.  On the acquisition and analysis of microscale thermophoresis data. , 2016, Analytical biochemistry.

[5]  Philipp Baaske,et al.  MicroScale Thermophoresis: Interaction analysis and beyond , 2014 .

[6]  Bo Wang,et al.  Coefficient of Variation, Signal-to-Noise Ratio, and Effects of Normalization in Validation of Biomarkers from NMR-based Metabonomics Studies. , 2013, Chemometrics and intelligent laboratory systems : an international journal sponsored by the Chemometrics Society.

[7]  Dieter Braun,et al.  Molecular interaction studies using microscale thermophoresis. , 2011, Assay and drug development technologies.

[8]  D. Braun,et al.  Optical thermophoresis for quantifying the buffer dependence of aptamer binding. , 2010, Angewandte Chemie.

[9]  Dieter Braun,et al.  Thermophoretic depletion follows Boltzmann distribution. , 2006, Physical review letters.

[10]  Serge Muyldermans,et al.  Kinetic and Affinity Predictions of a Protein-Protein Interaction Using Multivariate Experimental Design* , 2002, The Journal of Biological Chemistry.

[11]  D. Matulis,et al.  Uncertainty of protein-ligand binding constants: asymmetric confidence intervals versus standard errors , 2022 .

[12]  Christina Kluge,et al.  Data Reduction And Error Analysis For The Physical Sciences , 2016 .