Robust H∞ synchronization behavior for nonlinear stochastic coupled networks with time delays and noises

This paper studies a robust synchronization of nonlinear stochastic coupled networks under time-delays and environmental noises. A nonlinear stochastic dynamic model with time delays is proposed for describing a coupled nonlinear network under time delays, intrinsic parameter fluctuations, and extrinsic disturbances. We propose a robust synchronization criterion for attenuating these intrinsic parameter fluctuations and compensating process delays to achieve robust synchronization of nonlinear stochastic coupled networks from the nonlinear stochastic stability perspective. Furthermore, in order to avoid solving the complicated Hamilton-Jacobi inequalities (HJI) for the robust synchronization behavior, based on Takagi-Sugeno (T-S) fuzzy time-delay model and linear matrix inequalities (LMIs) technique, a systematic synchronization is proposed. Finally, a simulation example of coupled Brusselator systems is provided to illustrate our main results.

[1]  Mark Newman,et al.  Models of the Small World , 2000 .

[2]  P. Lancaster,et al.  The theory of matrices : with applications , 1985 .

[3]  Zidong Wang,et al.  Robust synchronisation of delayed neural networks with both linear and non-linear couplings , 2009, Int. J. Syst. Sci..

[4]  Donghua Zhou,et al.  Synchronization in uncertain complex networks. , 2006, Chaos.

[5]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[6]  Bor-Sen Chen,et al.  H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems , 2001, IEEE Trans. Fuzzy Syst..

[7]  Bor-Sen Chen,et al.  A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises , 2008, BMC Systems Biology.

[8]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[9]  Jianbin Qiu,et al.  A New Design of Delay-Dependent Robust ${\cal H}_{\bm \infty}$ Filtering for Discrete-Time T--S Fuzzy Systems With Time-Varying Delay , 2009, IEEE Transactions on Fuzzy Systems.

[10]  M. Newman Models of the Small World: A Review , 2000, cond-mat/0001118.

[11]  Zhongwei Lin,et al.  State-feedback H∞ Control for Nonlinear Stochastic Systems with Markovian Jumps in Infinite Time Horizon , 2008 .

[12]  Bor-Sen Chen,et al.  H∞ Control for a Class of Nonlinear Stochastic Time-Delay Systems , 2004 .

[13]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[14]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[15]  Bor-Sen Chen,et al.  Robust $H_{\infty}$-Stabilization Design in Gene Networks Under Stochastic Molecular Noises: Fuzzy-Interpolation Approach , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Bor-Sen Chen,et al.  Robust $H_{\infty}$ Synchronization Design of Nonlinear Coupled Network via Fuzzy Interpolation Method , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Bor-Sen Chen,et al.  Robust H∞ filtering for nonlinear stochastic systems , 2005 .

[18]  N. W. Rees,et al.  Stability analysis and design for a class of continuous-time fuzzy control systems , 1996 .

[19]  Bor-Sen Chen,et al.  Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model , 2001, IEEE Trans. Fuzzy Syst..

[20]  Bor-Sen Chen,et al.  Robustness design of nonlinear dynamic systems via fuzzy linear control , 1999, IEEE Trans. Fuzzy Syst..

[21]  Bor-Sen Chen,et al.  On stabilizability and exact observability of stochastic systems with their applications , 2023, Autom..

[22]  Kai Liu Stochastic Stability of Differential Equations in Abstract Spaces , 2022 .

[23]  Jinde Cao,et al.  Global Synchronization of Linearly Hybrid Coupled Networks with Time-Varying Delay , 2008, SIAM J. Appl. Dyn. Syst..

[24]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[25]  Hiroshi Kori,et al.  Synchronization engineering: theoretical framework and application to dynamical clustering. , 2008, Chaos.

[26]  Weihai Zhang,et al.  State Feedback HINFINITY Control for a Class of Nonlinear Stochastic Systems , 2006, SIAM J. Control. Optim..

[27]  Huaguang Zhang,et al.  Delay-Dependent Guaranteed Cost Control for Uncertain Stochastic Fuzzy Systems With Multiple Time Delays , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .