A 79-GHz Radar Sensor in LTCC Technology Using Grid Array Antennas

Concept, design, and measurement results of a frequency-modulated continuous-wave radar sensor in low-temperature co-fired ceramics (LTCC) technology is presented in this paper. The sensor operates in the frequency band between 77–81 GHz. As a key component of the system, wideband microstrip grid array antennas with a broadside beam are presented and discussed. The combination with a highly integrated feeding network and a four-channel transceiver chip based on SiGe technology results in a very compact LTCC RF frontend (23 mm <formula formulatype="inline"><tex Notation="TeX">$\times$</tex></formula> 23 mm). To verify the feasibility of the concept, first radar measurement results are presented.

[1]  Saverio Trotta,et al.  SiGe technology and circuits for automotive radar applications , 2011, 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[2]  S. Urpo,et al.  Chain antenna , 1974 .

[3]  Yue Ping Zhang,et al.  Grid Array Antennas With Subarrays and Multiple Feeds for 60-GHz Radios , 2012, IEEE Transactions on Antennas and Propagation.

[4]  Stephen P. Boyd,et al.  Antenna array pattern synthesis via convex optimization , 1997, IEEE Trans. Signal Process..

[5]  R. Conti,et al.  The wire grid microstrip antenna , 1981 .

[6]  Wolfgang Menzel,et al.  A 79 GHz microstrip grid array antenna using a laminated waveguide feed in LTCC , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[7]  R. Kulke,et al.  Design of vertical transition for 40GHz transceiver module using LTCC technology , 2007, 2007 European Microwave Integrated Circuit Conference.

[8]  K. Aufinger,et al.  A 77GHz 4-channel automotive radar transceiver in SiGe , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[9]  T. Zwick,et al.  Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band , 2012, IEEE Transactions on Microwave Theory and Techniques.

[10]  K.M. Strohm,et al.  Development of future short range radar technology , 2005, European Radar Conference, 2005. EURAD 2005..

[11]  Xin Wang,et al.  A 79-GHz LTCC differential microstrip line to laminated waveguide transition using high permittivity material , 2010, 2010 Asia-Pacific Microwave Conference.

[12]  J. Kraus A backward angle-fire array antenna , 1964 .

[13]  Gang Liu,et al.  Low-loss, low-cost, IC-to-board bondwire interconnects for millimeter-wave applications , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[14]  W. Menzel,et al.  A 79 GHz differentially fed grid array antenna , 2011, 2011 8th European Radar Conference.

[15]  Wolfgang Menzel,et al.  Millimeter-wave radar for civil applications , 2010, The 7th European Radar Conference.

[16]  W. Eisenstadt,et al.  Combined differential and common-mode scattering parameters: theory and simulation , 1995 .

[17]  A. Stelzer,et al.  A 77-GHz FMCW MIMO Radar Based on an SiGe Single-Chip Transceiver , 2009, IEEE Transactions on Microwave Theory and Techniques.

[18]  Xin Wang,et al.  A 79-GHz LTCC RF-frontend for short-range applications , 2011, 2011 IEEE MTT-S International Microwave Symposium.