On robot dynamic model identification through sub-workspace evolved trajectories for optimal torque estimation

Model-based control are affected by the accuracy of dynamic calibration. For industrial robots, identification techniques predominantly involve rigid body models linearized on a set of minimal lumped parameters that are estimated along excitatory trajectories made by suitable/optimal path. Although the physical meaning of the estimated lumped models is often lost (e.g. negative inertia values), these methodologies get remarkably results when well-conditioned trajectories are applied. Nonetheless, such trajectories have usually to span the workspace at large, resulting in an averagely fitting model. In many technological tasks, instead, the region of dynamics applications is limited, and generation of trajectories in such workspace sub-region results in different specialized models that should increase the predictability of local behavior. Besides this consideration, the paper presents a genetic-based selection of trajectories in constrained sub-region. The methodology places under optimization paths generated by a commercial industrial robot interpolator, and the genes (i.e. the degrees-of-freedom) of the evolutionary algorithms corresponds to a finite set of few via-points and velocities, just like standard motion programming of industrial robots. Remarkably, experiments demonstrate that this algorithm design feature allows a good matching of foreseen current and the actual measured in different task conditions.

[1]  Brian Armstrong On finding 'exciting' trajectories for identification experiments involving systems with non-linear dynamics , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[2]  Bruno Siciliano,et al.  The Potential of Model-Based Control Algorithms for Improving Industrial Robot Tracking Performance , 1990, Proceedings of the IEEE International Workshop on Intelligent Motion Control.

[3]  Wisama Khalil,et al.  On the identification of the inertial parameters of robots , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[4]  Antonio Visioli,et al.  Optimized Dynamic Calibration of a SCARA Robot , 2002 .

[5]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[6]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[7]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[8]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[9]  Pasquale Chiacchio,et al.  A systematic procedure for the identification of dynamic parameters of robot manipulators , 1999, Robotica.

[10]  Takeo Kanade,et al.  Experimental Evaluation of Nonlinear Feedback and Feedforward Control Schemes for Manipulators , 1988, Int. J. Robotics Res..

[11]  Marcelo H. Ang,et al.  Dynamic Model Identification for Industrial Robots , 2009 .

[12]  Jean-Claude Samin,et al.  Minimal Parametrization of Robot Dynamic Models , 1994 .

[13]  Vicente Mata,et al.  A comparison between direct and indirect dynamic parameter identification methods in industrial robots , 2006, Robotica.

[14]  Maxime Gautier Dynamic identification of robots with power model , 1997, Proceedings of International Conference on Robotics and Automation.

[15]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Giuseppe Carlo Calafiore,et al.  Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation , 2001, J. Field Robotics.

[18]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[19]  Jun Wu,et al.  Review: An overview of dynamic parameter identification of robots , 2010 .

[20]  Jean-Claude Samin,et al.  Minimal dynamic characterization of tree-like multibody systems , 1996 .

[21]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[22]  Pasquale Chiacchio,et al.  Identification of dynamic parameters and feedforward control for a conventional industrial manipulator , 1994 .

[23]  Maxime Gautier,et al.  New criteria of exciting trajectories for robot identification , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[24]  Antonio Visioli,et al.  Iterative-Learning Hybrid Force/Velocity Control for Contour Tracking , 2010, IEEE Transactions on Robotics.

[25]  Kyung-Jo Park,et al.  Fourier-based optimal excitation trajectories for the dynamic identification of robots , 2006, Robotica.

[26]  Brian Armstrong,et al.  On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics , 1989, Int. J. Robotics Res..

[27]  Sheng Chen,et al.  Robust nonlinear model identification methods using forward regression , 2003, IEEE Trans. Syst. Man Cybern. Part A.