Probabilistic Soft Logic for Semantic Textual Similarity

Probabilistic Soft Logic (PSL) is a recently developed framework for probabilistic logic. We use PSL to combine logical and distributional representations of natural-language meaning, where distributional information is represented in the form of weighted inference rules. We apply this framework to the task of Semantic Textual Similarity (STS) (i.e. judging the semantic similarity of naturallanguage sentences), and show that PSL gives improved results compared to a previous approach based on Markov Logic Networks (MLNs) and a purely distributional approach.

[1]  László Dezsö,et al.  Universal Grammar , 1981, Certainty in Action.

[2]  Tomek Strzalkowski,et al.  From Discourse to Logic , 1991 .

[3]  Curt Burgess,et al.  Producing high-dimensional semantic spaces from lexical co-occurrence , 1996 .

[4]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[5]  J. Friedman Stochastic gradient boosting , 2002 .

[6]  Chris Quirk,et al.  Unsupervised Construction of Large Paraphrase Corpora: Exploiting Massively Parallel News Sources , 2004, COLING.

[7]  James R. Curran,et al.  Parsing the WSJ Using CCG and Log-Linear Models , 2004, ACL.

[8]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[9]  Johan Bos,et al.  Wide-Coverage Semantic Analysis with Boxer , 2008, STEP.

[10]  Mirella Lapata,et al.  Vector-based Models of Semantic Composition , 2008, ACL.

[11]  Marco Baroni,et al.  Nouns are Vectors, Adjectives are Matrices: Representing Adjective-Noun Constructions in Semantic Space , 2010, EMNLP.

[12]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[13]  Mirella Lapata,et al.  Composition in Distributional Models of Semantics , 2010, Cogn. Sci..

[14]  Kristian Kersting,et al.  Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models , 2010, StarAI@AAAI.

[15]  Lise Getoor,et al.  Probabilistic Similarity Logic , 2010, UAI.

[16]  Katrin Erk,et al.  Integrating Logical Representations with Probabilistic Information using Markov Logic , 2011, IWCS.

[17]  Ido Dagan,et al.  Global Learning of Typed Entailment Rules , 2011, ACL.

[18]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[19]  William B. Dolan,et al.  Collecting Highly Parallel Data for Paraphrase Evaluation , 2011, ACL.

[20]  Eneko Agirre,et al.  SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity , 2012, *SEMEVAL.

[21]  Iryna Gurevych,et al.  UKP: Computing Semantic Textual Similarity by Combining Multiple Content Similarity Measures , 2012, *SEMEVAL.

[22]  Lise Getoor,et al.  A short introduction to probabilistic soft logic , 2012, NIPS 2012.

[23]  Lise Getoor,et al.  Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction , 2013, UAI.

[24]  Mark Steedman,et al.  Combined Distributional and Logical Semantics , 2013, TACL.

[25]  Andrew Chou,et al.  Semantic Parsing on Freebase from Question-Answer Pairs , 2013, EMNLP.

[26]  Eunsol Choi,et al.  Scaling Semantic Parsers with On-the-Fly Ontology Matching , 2013, EMNLP.

[27]  Edward Grefenstette,et al.  Towards a Formal Distributional Semantics: Simulating Logical Calculi with Tensors , 2013, *SEMEVAL.

[28]  Cuong Chau,et al.  Montague Meets Markov: Deep Semantics with Probabilistic Logical Form , 2013, *SEMEVAL.

[29]  Chris Callison-Burch,et al.  PPDB: The Paraphrase Database , 2013, NAACL.