Optoelectronic applications of LTMBE III-V materials

A review of the application of semiconductor layers grown at low substrate temperatures to ultrafast optoelectronics is presented. The films, grown by molecular beam epitaxy primarily around 200 °C and subsequently annealed, are demonstrated to have high resistivity, high mobility, an ultrashort carrier lifetime, and a high dielectric breakdown. This combination of properties makes the low-temperature-grown materials perfectly suited for use in high-speed optoelectronic devices. A number of issues which influence the application of these materials, such as growth temperature, use of an annealing process, layer thickness, and optical wavelength, are considered. Examples of low-temperature-grown semiconductor optoelectronic devices, including ultra-high-bandwidth photoconductive detectors, high-sensitivity, highbandwidth MSM photodetectors, and optical temporal analyzers are demonstrated. While the discussion concentrates on low-temperature-grown GaAs, the lattice-mismatched ternary compound InxGa ~ _xAs/GaAs is also considered in the context of detection of the longer wavelengths used in optical communications.

[1]  D. W. Kisker,et al.  Efficient generation of 480 fs electrical pulses on transmission lines by photoconductive switching in metalorganic chemical vapor deposited CdTe , 1989 .

[2]  J. Whitaker,et al.  Propagation characteristics of picosecond electrical transients on coplanar striplines , 1987 .

[3]  Michael R. Melloch,et al.  Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers , 1991 .

[4]  K. Ploog,et al.  Photoluminescence from hot carriers in low‐temperature‐grown gallium arsenide , 1992 .

[5]  J. Rosenzweig,et al.  Subpicosecond carrier lifetimes in radiation‐damaged GaAs , 1991 .

[6]  Gerard Mourou,et al.  High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs , 1990 .

[7]  J. Kortright,et al.  Structural properties of As‐rich GaAs grown by molecular beam epitaxy at low temperatures , 1989 .

[8]  F. J. Leonberger,et al.  Picosecond InP optoelectronic switches , 1982 .

[9]  Chi H. Lee Picosecond optoelectronic switching in GaAs , 1977 .

[10]  Gerard Mourou,et al.  Optoelectronic transient characterization of ultrafast devices , 1992 .

[11]  Mark B. Ketchen,et al.  Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes , 1989 .

[12]  F. Smith,et al.  375‐GHz‐bandwidth photoconductive detector , 1991 .

[13]  Fuad E. Doany,et al.  Carrier Lifetime vs. Ion-Implantation Dose in Silicon on Sapphire , 1987, Topical Meeting on Picosecond Electronics and Optoelectronics.

[14]  P. Vettiger,et al.  105-GHz bandwidth metal-semiconductor-metal photodiode , 1988, IEEE Electron Device Letters.

[15]  Michael R. Melloch,et al.  Arsenic precipitates and the semi‐insulating properties of GaAs buffer layers grown by low‐temperature molecular beam epitaxy , 1990 .

[16]  K. C. Hwang,et al.  Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs , 1993, IEEE Photonics Technology Letters.

[17]  E. Yablonovitch,et al.  Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates , 1990 .

[18]  J. Whitaker,et al.  Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures , 1992 .

[19]  Gerard Mourou,et al.  Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures , 1991 .

[20]  D. Auston Picosecond optoelectronic switching and gating in silicon , 1975 .

[21]  M. Melloch,et al.  1.3- mu m P-i-N photodetector using GaAs with As precipitates (GaAs:As) , 1991, IEEE Electron Device Letters.

[22]  Picosecond large-signal switching characteristics of a pseudomorphic AlGaAs/InGaAs modulated doped field effect transistor , 1992 .

[23]  Richard A. Soref,et al.  Carrier-induced change in refractive index of InP, GaAs and InGaAsP , 1990 .

[24]  Gerard Mourou,et al.  Picosecond pulse formation by transmission line discontinuities , 1989 .

[25]  G. Mourou,et al.  Subpicosecond electrooptic sampling: Principles and applications , 1986 .

[26]  M. Hollis,et al.  Picosecond GaAs-Based Photoconductive Optoelectronic Detectors , 1989, OSA Proceedings on Picosecond Electronics and Optoelectronics.