Front and rear contact Si solar cells combining high and low thermal budget Si passivating contacts

[1]  Ronald A. Sinton,et al.  Quasi-steady-state photoconductance, a new method for solar cell material and device characterization , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[2]  Andres Cuevas,et al.  Physical model of back line-contact front-junction solar cells , 2013 .

[3]  S. Glunz,et al.  A Study on the Charge Carrier Transport of Passivating Contacts , 2018, IEEE Journal of Photovoltaics.

[4]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[5]  Kenji Yamamoto,et al.  High-efficiency heterojunction crystalline Si solar cells , 2018, Japanese Journal of Applied Physics.

[6]  E. Marstein,et al.  Temporal stability of a-Si:H and a-SiNx:H on crystalline silicon wafers , 2017 .

[7]  W. V. Sark,et al.  Improving the performance of amorphous and crystalline silicon heterojunction solar cells by monitoring surface passivation , 2012 .

[8]  P. Alam ‘K’ , 2021, Composites Engineering.

[9]  J. Luchies,et al.  Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells , 2017 .

[10]  Yu Wu,et al.  Crystalline silicon solar cell with front and rear polysilicon passivated contacts as bottom cell for hybrid tandems , 2017 .

[11]  M. Creatore,et al.  Role of a‐Si:H bulk in surface passivation of c‐Si wafers , 2010 .

[12]  Liguo Wang,et al.  Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment. , 2014, Physical chemistry chemical physics : PCCP.

[13]  M. Werner,et al.  Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers grown by photo-oxidation or wet-chemical oxidation in ozonized water , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[14]  R. Brendel,et al.  Implementation of n+ and p+ Poly Junctions on Front and Rear Side of Double-Side Contacted Industrial Silicon Solar Cells , 2016 .

[15]  U. Das,et al.  Stability of amorphous/crystalline silicon heterojunctions , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[16]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[17]  D. Adachi,et al.  Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency , 2015 .

[18]  R. B. Tahar,et al.  Tin doped indium oxide thin films: Electrical properties , 1998 .

[19]  Martin A. Green,et al.  The Passivated Emitter and Rear Cell (PERC): From conception to mass production , 2015 .

[20]  Robby Peibst,et al.  Ion Implantation for Poly-Si Passivated Back-Junction Back-Contacted Solar Cells , 2015, IEEE Journal of Photovoltaics.

[21]  H. Fujiwara,et al.  Hydrogen-doped In2O3 as High-mobility Transparent Conductive Oxide , 2007 .

[22]  O. Bierwagen Indium oxide—a transparent, wide-band gap semiconductor for (opto)electronic applications , 2015 .

[23]  Abhai Mansingh,et al.  Band gap narrowing and the band structure of tin-doped indium oxide films , 1989 .

[24]  C. Battaglia,et al.  Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells , 2013 .

[25]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[26]  Ingrid G. Romijn,et al.  n-Type polysilicon passivating contact for industrial bifacial n-type solar cells , 2016 .

[27]  C. Battaglia,et al.  High-efficiency crystalline silicon solar cells: status and perspectives , 2016 .

[28]  R. Schropp,et al.  Towards the implementation of atomic layer deposited In2O3:H in silicon heterojunction solar cells , 2017 .

[29]  W. Kessels,et al.  Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects , 2018, IEEE Journal of Photovoltaics.

[30]  R. M. Swanson,et al.  A 720 mV open circuit voltage SiOx:c‐Si:SiOx double heterostructure solar cell , 1985 .

[31]  D. Young,et al.  Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium , 2018 .

[32]  U. Das,et al.  Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells , 2008 .

[33]  K. Ellmer,et al.  Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide , 2008 .

[34]  Miro Zeman,et al.  Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells , 2016 .

[35]  C. Ballif,et al.  Current Losses at the Front of Silicon Heterojunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[36]  M. Hermle,et al.  INFLUENCE OF THE TRANSPARENT ELECTRODE SPUTTERING PROCESS ON THE INTERFACE PASSIVATION QUALITY OF SILICON HETEROJUNCTION SOLAR CELLS , 2017 .

[37]  S. Glunz,et al.  Efficient carrier-selective p- and n-contacts for Si solar cells , 2014 .

[38]  E. Bugiel,et al.  Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? , 2016 .

[39]  C. Ballif,et al.  Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering , 2012 .

[40]  S. Glunz,et al.  n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation , 2017 .

[41]  Frank Säuberlich,et al.  Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment , 2010, Materials.

[42]  P. Würfel Physics of solar cells : from principles to new concepts , 2005 .

[43]  M. Zeman,et al.  IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts , 2016 .

[44]  M. Zeman,et al.  Wet-chemical Treatment for Improved Surface Passivation of Textured Silicon Heterojunction Solar Cells , 2014 .

[45]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[46]  Andreas Wolf,et al.  Comprehensive analytical model for locally contacted rear surface passivated solar cells , 2010 .

[47]  Giso Hahn,et al.  The Origin of Background Plating , 2011 .

[48]  C. Ballif,et al.  TEXTURED SILICON HETEROJUNCTION SOLAR CELLS WITH OVER 700 MV OPEN-CIRCUIT VOLTAGE STUDIED BY TRANSMISSION ELECTRON MICROSCOPY , 2008 .

[49]  W. Kessels,et al.  Concepts and prospects of passivating contacts for crystalline silicon solar cells , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[50]  M. Schubert,et al.  Optimizing Adhesion of Laser Structured Plated Ni-Cu Contacts with Insights from Micro Characterization☆ , 2016 .

[51]  R. Müller,et al.  Ion implantation into amorphous Si layers to form carrier‐selective contacts for Si solar cells , 2014 .

[52]  C. Ballif,et al.  Interplay of annealing temperature and doping in hole selective rear contacts based on silicon-rich silicon-carbide thin films , 2017 .

[53]  M. Zeman,et al.  Silicon Solar Cell Architecture with Front Selective and Rear Full Area Ion‐Implanted Passivating Contacts , 2017 .

[54]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[55]  L. Korte,et al.  Hydrogen plasma treatments for passivation of amorphous-crystalline silicon-heterojunctions on surfaces promoting epitaxy , 2013 .

[56]  C. Ballif,et al.  Properties of interfaces in amorphous/crystalline silicon heterojunctions , 2010 .

[57]  M. Reiter,et al.  Sol , 2018, Definitions.

[58]  M. Zeman,et al.  Theoretical evaluation of contact stack for high efficiency IBC-SHJ solar cells , 2018, Solar Energy Materials and Solar Cells.

[59]  M. Zeman,et al.  Influence of Intrinsic Layer Thickness in the Emitter and BSF of HIT Solar Cells , 2012 .

[60]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[61]  M. Kondo,et al.  Nature of doped a-Si:H / c-Si interface recombination , 2009 .

[62]  Pingqi Gao,et al.  Carrier transport through the ultrathin silicon-oxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells , 2018, Solar Energy Materials and Solar Cells.

[63]  C. N. Carvalho,et al.  Effect of thickness on the properties of ITO thin films deposited by RF- PERTE on unheated, flexible, transparent substrates , 2002 .

[64]  H. Fujiwara,et al.  Reduction of Optical Loss in Hydrogenated Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells by High-Mobility Hydrogen-Doped In2O3 Transparent Conductive Oxide , 2008 .

[65]  R. Brendel,et al.  Staebler–Wronski-like formation of defects at the amorphous-silicon–crystalline silicon interface during illumination , 2008 .