Null field approach to scalar diffraction I. General method

Invoking the optical extinction theorem (extended boundary condition) the conventional singular integral equation (for the density of reradiating sources existing in the surface of a totally reflecting body scattering monochromatic waves) is transformed into infinite sets of non-singular integral equations, called the null field equations. There is a set corresponding to each separable coordinate system (we say that we are using the ‘elliptic’, ‘spheroidal’, etc., null field method when we employ 'elliptic cylindrical', ‘spheroidal’, etc., coordinates). Each set can be used to compute the scattering from bodies of arbitrary shape, but each set is most appropriate for particular types of body shape as our computational results confirm. We assert that when the improvements (reported here) are incorporated into it, Waterman’s adaptation of the extinction theorem becomes a globally efficient computational approach. Shafai’s use of conformal transformation for automatically accomodating singularities of the surface source density is incorporated into the cylindrical null field methods. Our approach permits us to use multipole expansions in a computationally convenient manner, for arbitrary numbers of separated, interacting bodies of arbitrary shape. We present examples of computed surface source densities induced on pairs of elliptical and square cylinders.

[1]  F. Ursell,et al.  On the exterior problems of acoustics , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  The general problem of antenna radiation and the fundamental integral equation, with application to an antenna of revolution. I , 1948 .

[3]  George Weiss,et al.  Integral Equation Methods , 1969 .

[4]  A. A. Oliner,et al.  A New Theory of Wood’s Anomalies on Optical Gratings , 1965 .

[5]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[6]  W. Tabbara,et al.  Numerical aspects on coupling between complementary boundary value problems , 1973 .

[7]  Staffan Ström,et al.  T-matrix formulation of electromagnetic scattering from multilayered scatterers , 1974 .

[8]  R. H. T. Bates,et al.  Point matching computation of transverse resonances , 1973 .

[9]  C. Oseen Über die Wechselwirkung zwischen zwei elektrischen Dipolen und üer die Drehung der Polarisationsebene in Kristallen und Flüssigkeiten , 1915 .

[10]  G. Olaofe Scattering by Two Cylinders , 1970 .

[11]  D. Wilton,et al.  The extended boundary condition solution of the dipole antenna of revolution , 1972 .

[12]  Gertrude Blanch,et al.  Numerical aspects of Mathieu eigenvalues , 1966 .

[13]  G. Blanch,et al.  Numerical Evaluation of Continued Fractions , 1964 .

[14]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[15]  W. G. Bickley Two-Dimensional Potential Problems Concerning a Single Closed Boundary , 1929 .

[16]  J. Yen,et al.  Extended boundary condition integral equations for perfectly conducting and dielectric bodies: Formulation and uniqueness , 1975 .

[17]  Franz Záviška Über die Beugung elektromagnetischer Wellen an parallelen, unendlich langen Kreiszylindern , 1913 .

[18]  K. Iizuka,et al.  Surface currents on triangular and square metal cylinders , 1967 .

[19]  J. Meixner,et al.  Mathieusche Funktionen und Sphäroidfunktionen , 1954 .

[20]  L. Lewin On the Restricted Validity of Point-Matching Techniques , 1970 .

[21]  P. Waterman Matrix formulation of electromagnetic scattering , 1965 .

[22]  J. Hunter Scattering by conducting notched and wedged circular cylinders , 1974 .

[23]  F. H. Fenlon Calculation of the acoustic radiation field at the surface of a finite cylinder by the method of weighted residuals , 1969 .

[24]  P. Waterman,et al.  New Formulation of Acoustic Scattering , 1969 .

[25]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[26]  S. L. Cheng Multiple Scattering of Elastic Waves by Parallel Cylinders , 1969 .

[27]  L. Shafai An improved integral equation for the numerical solution of two-dimensional diffraction problems , 1970 .

[28]  P. P. Ewald,et al.  Zur Begründung der Kristalloptik , 1916 .

[29]  M. Lax Multiple Scattering of Waves , 1951 .

[30]  J. Sein A note on the Ewald-Oseen extinction theorem , 1970 .

[31]  Ronald V. Row,et al.  Theoretical and Experimental Study of Electromagnetic Scattering by Two Identical Conducting Cylinders , 1955 .

[32]  D. S. Jones,et al.  INTEGRAL EQUATIONS FOR THE EXTERIOR ACOUSTIC PROBLEM , 1974 .

[33]  R. A. Sack,et al.  Three‐Dimensional Addition Theorem for Arbitrary Functions Involving Expansions in Spherical Harmonics , 1964 .

[34]  V. Twersky,et al.  Multiple Scattering of Electromagnetic Waves by Arbitrary Configurations , 1967 .

[35]  A. Love,et al.  The Integration of the Equations of Propagation of Electric Waves , 2022 .

[36]  V. Twersky Multiple Scattering by Arbitrary Configurations in Three Dimensions , 1962 .

[37]  R. Bates,et al.  Null-Field Method for Waveguides of Arbitrary Cross Section , 1972 .

[38]  R. Bates,et al.  The extended boundary condition and thick axially symmetric antennas , 1974 .

[39]  S. G. Mikhlin,et al.  Integral equations―a reference text , 1975 .

[40]  P. Mazur,et al.  On the extinction theorem in electrodynamics , 1972 .

[41]  T. Pavlasek,et al.  A graphical representation for interpreting scalar wave multiple-scattering phenomena , 1974 .

[42]  W. G. Bickley Two‐Dimensional Potential Problems for the Space Outside a Rectangle , 1934 .

[43]  K. Al-Badwaihy,et al.  Hemispherically capped thick cylindrical monopole with a conical feed section , 1974 .

[44]  L. G. Copley,et al.  Integral Equation Method for Radiation from Vibrating Bodies , 1967 .

[45]  Y. Lo,et al.  Scattering by Two Spheres , 1966 .

[46]  R. Bates,et al.  Secondary diffraction from close edges on perfectly conducting bodies , 1972 .

[47]  K. Særmark Scattering of a plane monochromatic wave by a system of strips , 1959 .

[48]  E. Wolf,et al.  General form and a new interpretation of the Ewald-Oseen extinction theorem , 1972 .

[49]  P. Waterman,et al.  Scattering by periodic surfaces , 1975 .

[50]  J. Sein General extinction theorems , 1975 .

[51]  R.H.T. Bates,et al.  Polarisation-source formulation of electromagnetism and dielectric-loaded waveguides , 1972 .

[52]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[53]  A. Wirgin,et al.  Numerical comparison of the Green's function and the Waterman and Rayleigh theories of scattering from a cylinder with arbitrary cross-section , 1974 .

[54]  Witold Pogorzelski,et al.  Integral equations and their applications , 1966 .

[55]  R. Bates Modal expansions for electromagnetic scattering from perfectly conducting cylinders of arbitrary cross-section , 1968 .

[56]  O. Cruzan Translational addition theorems for spherical vector wave functions , 1962 .

[57]  T. Pavlasek,et al.  Multipole induction: a novel formulation of multiple scattering of scalar waves , 1973 .

[58]  N. Zitron,et al.  Higher-Order Approximations in Multiple Scattering. II. Three-Dimensional Scalar Case , 1961 .

[59]  T. Senior,et al.  Electromagnetic and Acoustic Scattering by Simple Shapes , 1969 .

[60]  R. H. T.Bates Analytic Constraints on Electromagnetic Field Computations , 1975 .

[61]  Raj Mittra,et al.  Analytical and Numerical Studies of the Relative Convergence Phenomenon Arising in the Solution of an Integral Equation by the Moment Method , 1972 .

[62]  S. Silver Microwave antenna theory and design , 1949 .

[63]  R. Bates The Theory of the Point-Matching Method for Perfectly Conducting Waveguides and Transmission Lines , 1969 .

[64]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[65]  H. A. Schenck Improved Integral Formulation for Acoustic Radiation Problems , 1968 .

[66]  W. Boerner,et al.  Correction to "Application of electromagnetic inverse boundary conditions to profile characteristics , 1974 .