Subdiffusion model with time-dependent diffusion coefficient: Integral-balance solution and analysis

The paper addresses approximate integral-balance approach to a time-fractional diffusion equation of order 0 < μ < 1 with a time-dependent diffusion coefficient of power-law type D(t)=D0tβ where 0 < β < 1. The form of the solution spreading in a semi-infinite medium through an analysis of the second moment of the approximate solution reveals that depending on the sum μ+β the solution can model subdiffusive (μ+β 1) or Gaussian (μ+β=1) process of transport. The optimal exponents of the approximate parabolic profiles have been determined by minimization the mean squared error of approximation over the penetration depth.

[1]  Katja Lindenberg,et al.  Comment on "mean first passage time for anomalous diffusion". , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Mehdi Dehghan,et al.  A tau approach for solution of the space fractional diffusion equation , 2011, Comput. Math. Appl..

[3]  Hari M. Srivastava,et al.  The exact solution of certain differential equations of fractional order by using operational calculus , 1995 .

[4]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[5]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[6]  Applications of the variational iteration method to fractional diffusion equations: local versus nonlocal ones , 2012 .

[7]  Description of the anomalous diffusion of fast electrons by a kinetic equation with a fractional spatial derivative , 2004 .

[8]  Kwok Sau Fa,et al.  Time-fractional diffusion equation with time dependent diffusion coefficient. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Jordan Hristov,et al.  AN APPROXIMATE SOLUTION TO THE TRANSIENT SPACE-FRACTIONAL DIFFUSION EQUATION Integral-Balance Approach, Optimization Problems, and Analyzes , 2017 .

[10]  J. Hristov Double integral-balance method to the fractional subdiffusion equation: Approximate solutions, optimization problems to be resolved and numerical simulations , 2017 .

[11]  Pierre Colinet,et al.  On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions , 2006 .

[12]  Dumitru Baleanu,et al.  Variational iteration method for fractional calculus - a universal approach by Laplace transform , 2013 .

[13]  I. Podlubny Fractional differential equations , 1998 .

[14]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[15]  Jordan Hristov,et al.  Transient Space-fractional Diffusion with a Power-law Superdiffusivity: Approximate Integral-balance Approach , 2017, Fundam. Informaticae.

[16]  Hari M. Srivastava,et al.  Approximate Solutions to Time-fractional Models by Integral-balance Approach , 2015 .

[17]  Fawang Liu,et al.  The fundamental solution of the space-time fractional advection-dispersion equation , 2005 .

[18]  Ningming Nie,et al.  Solving spatial-fractional partial differential diffusion equations by spectral method , 2014 .

[19]  S. Ray,et al.  Analytical solution for the space fractional diffusion equation by two-step Adomian Decomposition Method , 2009 .

[20]  David Langford,et al.  The heat balance integral method , 1973 .

[21]  Anita Alaria,et al.  Applications of Fractional Calculus , 2018 .

[22]  K. S. Fa,et al.  Power law diffusion coefficient and anomalous diffusion: analysis of solutions and first passage time. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Wu Guo-Cheng,et al.  Variational iteration method for solving the time-fractional diffusion equations in porous medium , 2012 .

[24]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[25]  J. Hristov,et al.  On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity , 2017 .

[26]  P. Gupta,et al.  An approximate analytical solution of Nonlinear Fractional Diffusion Equation , 2011 .

[27]  T. Goodman Application of Integral Methods to Transient Nonlinear Heat Transfer , 1964 .

[28]  Kwok Sau Fa,et al.  Anomalous diffusion, solutions, and first passage time: Influence of diffusion coefficient. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Hristov Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions , 2016 .

[30]  Fawang Liu,et al.  The space-time fractional diffusion equation with Caputo derivatives , 2005 .

[31]  Masahiro Yamamoto,et al.  Overview to mathematical analysis for fractional diffusion equations - new mathematical aspects motivated by industrial collaboration , 2010 .

[32]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[33]  H. Srivastava,et al.  Local Fractional Integral Transforms and Their Applications , 2015 .

[34]  Subir Das,et al.  A note on fractional diffusion equations , 2009 .