Finding the Medial Axis of a Simple Polygon in Linear Time

We give a linear-time algorithm for computing the medial axis of a simple polygon P, This answers a long-standing open question—previously, the best deterministic algorithm ran in O(n log n) time. We decompose P into pseudo-normal histograms, then influence histograms and xy monotone histograms. We can compute the medial axes for xy monotone histograms and merge to obtain the medial axis for P.

[1]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[2]  P. J. Vermeer,et al.  Two-dimensional MAT to boundary conversion , 1993, Solid Modeling and Applications.

[3]  Andrzej Lingas,et al.  On Computing the Voronoi Diagram for Restricted Planar Figures , 1991, WADS.

[4]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[5]  Andrzej Lingas,et al.  Fast Skeleton Construction , 1995, ESA.

[6]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Azriel Rosenfeld,et al.  Axial representations of shape , 1986, Computer Vision Graphics and Image Processing.

[8]  Olivier Devillers Randomization yields simple O(n log* n) algorithms for difficult Omega(n) problems , 1992, Int. J. Comput. Geom. Appl..

[9]  Martin Held,et al.  On the Computational Geometry of Pocket Machining , 1991, Lecture Notes in Computer Science.

[10]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[11]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[12]  Andrzej Lingas,et al.  A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon , 1993, SCG '93.

[13]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[14]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrainted Voronoi Diagram of a Simple Polygon in Linear-Time (Extended Abstract) , 1995, ESA.

[15]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[16]  He Xu,et al.  Detecting and eliminating false strokes in skeletons by geometric analysis , 1993, Other Conferences.

[17]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).