Norges Teknisk-naturvitenskapelige Universitet Estimating Stochastic Volatility Models Using Integrated Nested Laplace Approximations Estimating Stochastic Volatility Models Using Integrated Nested Laplace Approximations
暂无分享,去创建一个
Kjersti Aas | Håvard Rue | Sara Martino | H. Rue | S. Martino | K. Aas | Ola Lindqvist | Linda R. Neef | Ola Lindqvist | Linda Reiersølmoen Neef
[1] Asger Lunde,et al. The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model , 2001 .
[2] E. Ruiz,et al. Estimation Methods for Stochastic Volatility Models: A Survey , 2004 .
[3] E. Ruiz. Quasi-maximum likelihood estimation of stochastic volatility models , 1994 .
[4] M. Rypdal,et al. A multifractal approach towards inference in finance , 2012, 1202.5376.
[5] Peter Congdon,et al. Gaussian Markov Random Fields: Theory and Applications , 2007 .
[6] L. M. M.-T.. Theory of Probability , 1929, Nature.
[7] P. Franses,et al. A simple test for GARCH against a stochastic volatility , 2008 .
[8] N. Shephard,et al. Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .
[9] S. Taylor. Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .
[10] Finn Lindgren,et al. Bayesian computing with INLA: New features , 2012, Comput. Stat. Data Anal..
[11] Jun Yu,et al. Bugs for a Bayesian Analysis of Stochastic Volatility Models , 2000 .
[12] M. Pitt,et al. Likelihood analysis of non-Gaussian measurement time series , 1997 .
[13] E. Ruiz,et al. Persistence and Kurtosis in GARCH and Stochastic Volatility Models , 2004 .
[14] Erik Bblviken. QUANTIFICATION OF RISK IN NORWEGIAN STOCKS VIA THE NORMAL INVERSE GAUSSIAN DISTRIBUTION , 2002 .
[15] A. Azzalini,et al. Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.
[16] P. D. Jongh,et al. Risk estimation using the normal inverse Gaussian distribution , 2001 .
[17] Jun Yu. On Leverage in a Stochastic Volatility Model , 2004 .
[18] Daniel B. Nelson. CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .
[19] L. Glosten,et al. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .
[20] J. Geweke. Bayesian comparison of econometric models , 1994 .
[21] L. Tierney,et al. Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .
[22] A. Christie,et al. The stochastic behavior of common stock variances: value , 1982 .
[23] C. Pederzoli. Stochastic Volatility and GARCH: a Comparison Based on UK Stock Data , 2006 .
[24] Jun Yu,et al. On Leverage in a Stochastic Volatility Model , 2005 .
[25] Selecting an innovation distribution for Garch models to improve efficiency of risk and volatility estimation , 2004 .
[26] Nicholas G. Polson,et al. The Impact of Jumps in Volatility and Returns , 2000 .
[27] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[28] Karsten Prause,et al. Modelling Financial Data Using Generalized Hyperbolic Distributions , 1997 .
[29] Jun Yu,et al. Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison , 2006 .
[30] Chris Kirby,et al. A Closer Look at the Relation between GARCH and Stochastic Autoregressive Volatility , 2003 .
[31] Bent E. Sørensen,et al. Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study , 1999 .
[32] Russell P. Robins,et al. Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .
[33] N. Shephard,et al. Markov chain Monte Carlo methods for stochastic volatility models , 2002 .
[34] Tim Bollerslev,et al. Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH‐NIG model , 2002 .
[35] Tina Hviid Rydberg. The normal inverse gaussian lévy process: simulation and approximation , 1997 .
[36] N. Shephard,et al. Multivariate stochastic variance models , 1994 .
[37] Jón Dańıelsson. Stochastic volatility in asset prices estimation with simulated maximum likelihood , 1994 .
[38] Risk analysis and the NIG distribution , 2000 .
[39] Leonhard Held,et al. Gaussian Markov Random Fields: Theory and Applications , 2005 .
[40] T. Bollerslev,et al. Generalized autoregressive conditional heteroskedasticity , 1986 .
[41] Jonas Andersson,et al. On the Normal Inverse Gaussian Stochastic Volatility Model , 2001 .
[42] Jun Yu,et al. Forecasting volatility in the New Zealand stock market , 2002 .
[43] O. Barndorff-Nielsen. Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .
[44] N. G. Best,et al. WinBUGS User Manual: Version 1.4 , 2001 .
[45] Bent E. Sørensen,et al. GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study , 1996 .
[46] H. Rue,et al. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .
[47] E. Eberlein,et al. Hyperbolic distributions in finance , 1995 .
[48] N. Shephard,et al. Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns , 1996 .
[49] Jun Yu,et al. Forecasting Volatility:Evidence from the German Stock Market , 2001 .