Norges Teknisk-naturvitenskapelige Universitet Estimating Stochastic Volatility Models Using Integrated Nested Laplace Approximations Estimating Stochastic Volatility Models Using Integrated Nested Laplace Approximations

Volatility in financial time series is mainly analysed through two classes of models; the generalized autoregressive conditional heteroscedasticity (GARCH) models and the stochastic volatility (SV) ones. GARCH models are straightforward to estimate using maximum-likelihood techniques, while SV models require more complex inferential and computational tools, such as Markov Chain Monte Carlo (MCMC). Hence, although provided with a series of theoretical advantages, SV models are in practice much less popular than GARCH ones. In this paper, we solve the problem of inference for some SV models by applying a new inferential tool, integrated nested Laplace approximations (INLAs). INLA substitutes MCMC simulations with accurate deterministic approximations, making a full Bayesian analysis of many kinds of SV models extremely fast and accurate. Our hope is that the use of INLA will help SV models to become more appealing to the financial industry, where, due to their complexity, they are rarely used in practice.

[1]  Asger Lunde,et al.  The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model , 2001 .

[2]  E. Ruiz,et al.  Estimation Methods for Stochastic Volatility Models: A Survey , 2004 .

[3]  E. Ruiz Quasi-maximum likelihood estimation of stochastic volatility models , 1994 .

[4]  M. Rypdal,et al.  A multifractal approach towards inference in finance , 2012, 1202.5376.

[5]  Peter Congdon,et al.  Gaussian Markov Random Fields: Theory and Applications , 2007 .

[6]  L. M. M.-T. Theory of Probability , 1929, Nature.

[7]  P. Franses,et al.  A simple test for GARCH against a stochastic volatility , 2008 .

[8]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[9]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .

[10]  Finn Lindgren,et al.  Bayesian computing with INLA: New features , 2012, Comput. Stat. Data Anal..

[11]  Jun Yu,et al.  Bugs for a Bayesian Analysis of Stochastic Volatility Models , 2000 .

[12]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[13]  E. Ruiz,et al.  Persistence and Kurtosis in GARCH and Stochastic Volatility Models , 2004 .

[14]  Erik Bblviken QUANTIFICATION OF RISK IN NORWEGIAN STOCKS VIA THE NORMAL INVERSE GAUSSIAN DISTRIBUTION , 2002 .

[15]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[16]  P. D. Jongh,et al.  Risk estimation using the normal inverse Gaussian distribution , 2001 .

[17]  Jun Yu On Leverage in a Stochastic Volatility Model , 2004 .

[18]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[19]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[20]  J. Geweke Bayesian comparison of econometric models , 1994 .

[21]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[22]  A. Christie,et al.  The stochastic behavior of common stock variances: value , 1982 .

[23]  C. Pederzoli Stochastic Volatility and GARCH: a Comparison Based on UK Stock Data , 2006 .

[24]  Jun Yu,et al.  On Leverage in a Stochastic Volatility Model , 2005 .

[25]  Selecting an innovation distribution for Garch models to improve efficiency of risk and volatility estimation , 2004 .

[26]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[27]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[28]  Karsten Prause,et al.  Modelling Financial Data Using Generalized Hyperbolic Distributions , 1997 .

[29]  Jun Yu,et al.  Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison , 2006 .

[30]  Chris Kirby,et al.  A Closer Look at the Relation between GARCH and Stochastic Autoregressive Volatility , 2003 .

[31]  Bent E. Sørensen,et al.  Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study , 1999 .

[32]  Russell P. Robins,et al.  Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .

[33]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[34]  Tim Bollerslev,et al.  Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH‐NIG model , 2002 .

[35]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[36]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[37]  Jón Dańıelsson Stochastic volatility in asset prices estimation with simulated maximum likelihood , 1994 .

[38]  Risk analysis and the NIG distribution , 2000 .

[39]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[40]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[41]  Jonas Andersson,et al.  On the Normal Inverse Gaussian Stochastic Volatility Model , 2001 .

[42]  Jun Yu,et al.  Forecasting volatility in the New Zealand stock market , 2002 .

[43]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[44]  N. G. Best,et al.  WinBUGS User Manual: Version 1.4 , 2001 .

[45]  Bent E. Sørensen,et al.  GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study , 1996 .

[46]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[47]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[48]  N. Shephard,et al.  Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns , 1996 .

[49]  Jun Yu,et al.  Forecasting Volatility:Evidence from the German Stock Market , 2001 .