A genetic perspective on Longobard-Era migrations

[1]  A. Kassambara,et al.  Extract and Visualize the Results of Multivariate Data Analyses [R package factoextra version 1.0.7] , 2020 .

[2]  M. Hervella,et al.  Maternal DNA lineages at the gate of Europe in the 10th century AD , 2018, PloS one.

[3]  K. Veeramah,et al.  Understanding 6th-century barbarian social organization and migration through paleogenomics , 2018, Nature Communications.

[4]  Chuan-Chao Wang,et al.  The genetic prehistory of the Baltic Sea region , 2018, Nature Communications.

[5]  Marie Besse,et al.  The Beaker Phenomenon and the Genomic Transformation of Northwest Europe , 2018, Nature.

[6]  D. Reich,et al.  Genome diversity in the Neolithic Globular Amphorae culture and the spread of Indo-European languages , 2017, Proceedings of the Royal Society B: Biological Sciences.

[7]  M. Jobling,et al.  Population resequencing of European mitochondrial genomes highlights sex-bias in Bronze Age demographic expansions , 2017, Scientific Reports.

[8]  Swapan Mallick,et al.  Parallel paleogenomic transects reveal complex genetic history of early European farmers , 2017, Nature.

[9]  G. Barbujani,et al.  Complete mitochondrial sequences from Mesolithic Sardinia , 2017, Scientific Reports.

[10]  Erika Molnár,et al.  Revising mtDNA haplotypes of the ancient Hungarian conquerors with next generation sequencing , 2016, bioRxiv.

[11]  Anna Szécsényi-Nagy,et al.  Maternal Genetic Composition of a Medieval Population from a Hungarian-Slavic Contact Zone in Central Europe , 2016, PloS one.

[12]  Mark George Thomas,et al.  Genomic signals of migration and continuity in Britain before the Anglo-Saxons , 2016, Nature Communications.

[13]  I. Koncz 568 — A historical date and its archaeological consequences* , 2015 .

[14]  Mannis van Oven,et al.  PhyloTree Build 17: Growing the human mitochondrial DNA tree , 2015 .

[15]  D. Reich,et al.  Genome-wide patterns of selection in 230 ancient Eurasians , 2015, Nature.

[16]  Mattias Jakobsson,et al.  Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques , 2015, Proceedings of the National Academy of Sciences.

[17]  R. Durbin,et al.  Iron Age and Anglo-Saxon genomes from East England reveal British migration history , 2015, Nature Communications.

[18]  Kendra Sirak,et al.  Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone , 2015, PloS one.

[19]  Søren Brunak,et al.  Population genomics of Bronze Age Eurasia , 2015, Nature.

[20]  T. Kivisild,et al.  Maternal ancestry and population history from whole mitochondrial genomes , 2015, Investigative Genetics.

[21]  Swapan Mallick,et al.  Massive migration from the steppe was a source for Indo-European languages in Europe , 2015, Nature.

[22]  K. Veeramah,et al.  Genealogical Relationships between Early Medieval and Modern Inhabitants of Piedmont , 2015, PloS one.

[23]  K. Alt,et al.  Lombards on the Move – An Integrative Study of the Migration Period Cemetery at Szólád, Hungary , 2014, PloS one.

[24]  Jean-Marie Cornuet,et al.  ABC model choice via random forests , 2014, 1406.6288.

[25]  Cristina E. Valdiosera,et al.  Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments , 2013, Proceedings of the National Academy of Sciences.

[26]  Philip L. F. Johnson,et al.  mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters , 2013, Bioinform..

[27]  Philip L. F. Johnson,et al.  A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes , 2013, Current Biology.

[28]  A. Piazza,et al.  Diachronic and synchronic genetic analysis of ancient piedmont population , 2012 .

[29]  Thibaut Jombart,et al.  adegenet 1.3-1: new tools for the analysis of genome-wide SNP data , 2011, Bioinform..

[30]  Günther Specht,et al.  HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups , 2011, Human mutation.

[31]  S. Pääbo,et al.  Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products , 2010, PloS one.

[32]  F. Balloux,et al.  Discriminant analysis of principal components: a new method for the analysis of genetically structured populations , 2010, BMC Genetics.

[33]  Matthias Meyer,et al.  Illumina sequencing library preparation for highly multiplexed target capture and sequencing. , 2010, Cold Spring Harbor protocols.

[34]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[35]  Laurent Excoffier,et al.  ABCtoolbox: a versatile toolkit for approximate Bayesian computations , 2010, BMC Bioinformatics.

[36]  Thibaut Jombart,et al.  adegenet: a R package for the multivariate analysis of genetic markers , 2008, Bioinform..

[37]  A. Sajantila,et al.  Finnish mitochondrial DNA HVS-I and HVS-II population data. , 2007, Forensic science international.

[38]  Laurent Excoffier,et al.  Molecular analysis reveals tighter social regulation of immigration in patrilocal populations than in matrilocal populations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[40]  H. Bandelt,et al.  Mitochondrial portraits of human populations using median networks. , 1995, Genetics.

[41]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[42]  Caterina Giostra Goths and Lombards in Italy: the potential of archaeology with respect to ethnocultural identification , 2011 .

[43]  L. Breiman Random Forests , 2001, Machine Learning.

[44]  P. Geary The Myth of Nations: The Medieval Origins of Europe , 2001 .