Emerging whole-cell modeling principles and methods.

Whole-cell computational models aim to predict cellular phenotypes from genotype by representing the entire genome, the structure and concentration of each molecular species, each molecular interaction, and the extracellular environment. Whole-cell models have great potential to transform bioscience, bioengineering, and medicine. However, numerous challenges remain to achieve whole-cell models. Nevertheless, researchers are beginning to leverage recent progress in measurement technology, bioinformatics, data sharing, rule-based modeling, and multi-algorithmic simulation to build the first whole-cell models. We anticipate that ongoing efforts to develop scalable whole-cell modeling tools will enable dramatically more comprehensive and more accurate models, including models of human cells.

[1]  Michael Y. Galperin,et al.  The 24th annual Nucleic Acids Research database issue: a look back and upcoming changes , 2017, Nucleic acids research.

[2]  A. Heck,et al.  Next-generation proteomics: towards an integrative view of proteome dynamics , 2012, Nature Reviews Genetics.

[3]  Nicola Zamboni,et al.  High-throughput discovery metabolomics. , 2015, Current opinion in biotechnology.

[4]  P. Laird Principles and challenges of genome-wide DNA methylation analysis , 2010, Nature Reviews Genetics.

[5]  Derek N. Macklin,et al.  The future of whole-cell modeling. , 2014, Current opinion in biotechnology.

[6]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[7]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[8]  Ruby Lee,et al.  WholeCellViz: data visualization for whole-cell models , 2013, BMC Bioinformatics.

[9]  Julio R. Banga,et al.  Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy , 2017, BMC Bioinformatics.

[10]  Masaru Tomita,et al.  E-CELL: software environment for whole-cell simulation , 1999, Bioinform..

[11]  Peter Schirmbacher,et al.  Making Research Data Repositories Visible: The re3data.org Registry , 2013, PloS one.

[12]  Martin Ester,et al.  PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes , 2010, Bioinform..

[13]  Javier Carrera,et al.  Why Build Whole-Cell Models? , 2015, Trends in cell biology.

[14]  Axel Legay,et al.  Statistical Model Checking in BioLab: Applications to the Automated Analysis of T-Cell Receptor Signaling Pathway , 2008, CMSB.

[15]  Peter D. Karp,et al.  Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology , 2016, Briefings Bioinform..

[16]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[17]  David S. Wishart,et al.  ECMDB 2.0: A richer resource for understanding the biochemistry of E. coli , 2015, Nucleic Acids Res..

[18]  M L Shuler,et al.  Incorporating genome-wide DNA sequence information into a dynamic whole-cell model of Escherichia coli: application to DNA replication. , 2008, IET systems biology.

[19]  Carole A. Goble,et al.  SEEK: a systems biology data and model management platform , 2015, BMC Systems Biology.

[20]  I. Macaulay,et al.  Single Cell Genomics: Advances and Future Perspectives , 2014, PLoS genetics.

[21]  Peter D. Karp,et al.  Construction and completion of flux balance models from pathway databases , 2012, Bioinform..

[22]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[23]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[24]  Robert Petryszak,et al.  ArrayExpress update—simplifying data submissions , 2014, Nucleic Acids Res..

[25]  Jonathan R. Karr,et al.  WholeCellKB: model organism databases for comprehensive whole-cell models , 2012, Nucleic Acids Res..

[26]  M. Tomita Whole-cell simulation: a grand challenge of the 21st century. , 2001, Trends in biotechnology.

[27]  Jonathan R. Karr,et al.  The principles of whole-cell modeling. , 2015, Current opinion in microbiology.

[28]  Sean C. Bendall,et al.  A deep profiler's guide to cytometry. , 2012, Trends in immunology.

[29]  Lei Shi,et al.  SABIO-RK—database for biochemical reaction kinetics , 2011, Nucleic Acids Res..

[30]  Julio O. Ortiz,et al.  Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study , 2011, PLoS Comput. Biol..

[31]  Jens Timmer,et al.  Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models , 2015, PLoS Comput. Biol..

[32]  Damian Szklarczyk,et al.  Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell‐lines , 2015, Proteomics.

[33]  Julio Saez-Rodriguez,et al.  BioServices: a common Python package to access biological Web Services programmatically , 2013, Bioinform..

[34]  T. Helikar,et al.  A Cell Simulator Platform: The Cell Collective , 2013, Clinical pharmacology and therapeutics.

[35]  A. Saliba,et al.  Single-cell RNA-seq: advances and future challenges , 2014, Nucleic acids research.

[36]  The UniProt Consortium UniProt: the universal protein knowledgebase , 2016, Nucleic Acids Res..

[37]  L. Mirny,et al.  Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data , 2013, Nature Reviews Genetics.

[38]  Sven Sahle,et al.  Computational modeling of biochemical networks using COPASI. , 2009, Methods in molecular biology.

[39]  Jonathan R. Karr,et al.  A blueprint for human whole-cell modeling. , 2018, Current opinion in systems biology.

[40]  Chris J. Myers,et al.  Toward community standards and software for whole-cell modeling , 2016, IEEE Transactions on Biomedical Engineering.

[41]  Daniel C. Zielinski,et al.  Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. , 2015, Cell systems.

[42]  Dipak Barua,et al.  BioNetGen 2.2: advances in rule-based modeling , 2015, Bioinform..

[43]  Arthur P. Goldberg,et al.  Toward Scalable Whole-Cell Modeling of Human Cells , 2016, SIGSIM-PADS.

[44]  Masaru Tomita,et al.  E‐Cell: Computer Simulation of the Cell , 2012 .

[45]  Jonathan R. Karr,et al.  WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions , 2014, Database J. Biol. Databases Curation.

[46]  D. Resasco,et al.  Virtual Cell: computational tools for modeling in cell biology , 2012, Wiley interdisciplinary reviews. Systems biology and medicine.

[47]  Paul R Cohen,et al.  DARPA's Big Mechanism program , 2015, Physical biology.

[48]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[49]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[50]  P. Park ChIP–seq: advantages and challenges of a maturing technology , 2009, Nature Reviews Genetics.

[51]  Carlos F. Lopez,et al.  Programming biological models in Python using PySB , 2013, Molecular systems biology.

[52]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[53]  Arthur P. Goldberg,et al.  Guidelines for Reproducibly Building and Simulating Systems Biology Models , 2016, IEEE Transactions on Biomedical Engineering.