Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency’s Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10−10 to 10−7 kilograms, and 48 grains of mass 10−5 to 10−2 kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

[1]  E. Kührt,et al.  Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko , 2015, Science.

[2]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[3]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[4]  Simon F. Green,et al.  GIADA: its status after the Rosetta cruise phase and on-ground activity in support of the encounter with comet 67P/Churyumov-Gerasimenko , 2014 .

[5]  E. Dartois,et al.  Two refractory Wild 2 terminal particles from a carrot‐shaped track characterized combining MIR/FIR/Raman microspectroscopy and FE‐SEM/EDS analyses , 2014 .

[6]  D. Bramich,et al.  Beginning of activity in 67P/Churyumov-Gerasimenko and predictions for 2014–2015 , 2013, 1307.7978.

[7]  D. Brownlee,et al.  Dust Flux Monitor Instrument measurements during Stardust-NExT Flyby of Comet 9P/Tempel 1 , 2013 .

[8]  E. Grün,et al.  Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target , 2010 .

[9]  W. Reach,et al.  The dust trail of Comet 67P/Churyumov-Gerasimenko between 2004 and 2006 , 2010, 1001.3775.

[10]  J. Borg,et al.  Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils , 2008 .

[11]  M. Chi,et al.  Comparing Wild 2 particles to chondrites and IDPs , 2008 .

[12]  V. Della Corte,et al.  The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results , 2007 .

[13]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[14]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[15]  N. Mcbride,et al.  In Situ Dust Measurements From within the Coma of 1P/Halley: First-Order Approximation with a Dust Dynamical Model , 2000 .

[16]  Daniel J. Scheeres,et al.  Temporary orbital capture of ejecta from comets and asteroids: Application to the Deep Impact experiment , 2000 .

[17]  M. Fulle Injection of large grains into orbits around comet nuclei. , 1997 .

[18]  H. U. Keller,et al.  On the stability of dust particle orbits around cometary nuclei , 1995 .

[19]  D. Hughes,et al.  Dust particle impacts during the Giotto encounter with comet Grigg–Skjellerup , 1993, Nature.

[20]  S. Green,et al.  The comet nucleus: ice and dust morphological balances in a production surface of comet P/Halley. , 1989 .

[21]  S. Debei,et al.  67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS , 2015 .

[22]  D. Brownlee,et al.  The dust mass distribution of comet 81 P / Wild 2 Journal Item , 2011 .

[23]  G. A. Lukyanov,et al.  Physical Model of the Coma of Comet 67P/Churyumov-Gerasimenko , 2004 .

[24]  D. L. De Zeeuw,et al.  Comparison of photometer and global MHD determination of the open‐closed field line boundary , 2004 .

[25]  Frans J. M. Rietmeijer,et al.  Interplanetary dust particles , 1998 .

[26]  G. B. Tiepolo Injection of large grains into orbits around comet nuclei , 1997 .

[27]  M. Saniga,et al.  Interplanetary dust particles and solar wind , 1993 .