Microalgae Chlorella sp. cell disruption efficiency utilising ultrasonication and ultrahomogenisation methods

[1]  M. Brooks,et al.  Microalgae disruption techniques for product recovery: influence of cell wall composition , 2018, Journal of Applied Phycology.

[2]  V. Makarevičienė,et al.  Green algae Ankistrodesmus fusiformis cell disruption using different modes , 2017 .

[3]  M. D. Gurol,et al.  Using ozone for microalgal cell disruption to improve enzymatic saccharification of cellular carbohydrates , 2017 .

[4]  M. Eppink,et al.  Cell disruption for microalgae biorefineries. , 2015, Biotechnology advances.

[5]  D. Lewis,et al.  Microalgal cell disruption by hydrodynamic cavitation for the production of biofuels , 2015, Journal of Applied Phycology.

[6]  T. Mason,et al.  The effect of ultrasound on the growth and viability of microalgae cells , 2014, Journal of Applied Phycology.

[7]  Helena M. Amaro,et al.  Optimization of ABTS radical cation assay specifically for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. , 2013, Food chemistry.

[8]  Brock Faulkner,et al.  Effect of High Pressure Homogenization on Aqueous Phase Solvent Extraction of Lipids from Nannochloris Oculata Microalgae , 2012 .

[9]  R. E. Lacey,et al.  Algal cell rupture using high pressure homogenization as a prelude to oil extraction , 2012 .

[10]  D. Lewis,et al.  Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements , 2012 .

[11]  Gursong Yoo,et al.  Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. , 2012, Bioresource technology.

[12]  S. Pieper,et al.  A new arabinomannan from the cell wall of the chlorococcal algae Chlorella vulgaris. , 2012, Carbohydrate research.

[13]  P. Webley,et al.  Extraction of oil from microalgae for biodiesel production: A review. , 2012, Biotechnology advances.

[14]  M. Borowitzka,et al.  Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption , 2012, Journal of Applied Phycology.

[15]  D. Domozych Algal Cell Walls , 2011 .

[16]  P. Prabakaran,et al.  A comparative study on effective cell disruption methods for lipid extraction from microalgae , 2011, Letters in applied microbiology.

[17]  Xiao-Jun Ji,et al.  Disruption of Chlorella vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves , 2011, Applied biochemistry and biotechnology.

[18]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[19]  J. Doucha,et al.  Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers , 2008, Applied Microbiology and Biotechnology.

[20]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[21]  A. Young,et al.  Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability , 2001, Journal of Applied Phycology.

[22]  V. S. Moholkar,et al.  Modeling of hydrodynamic cavitation reactors: a unified approach , 2001 .

[23]  Kester Nahen,et al.  Dynamics of laser-induced cavitation bubbles near an elastic boundary , 2001, Journal of Fluid Mechanics.