FINITE VOLUME METHODS ON VORONOI MESHES

Two cell-centered finite difference schemes on Voronoi meshes are derived and investigated. Stability and error estimates in a discrete H1-norm for both symmetric and nonsymmetric problems, including convection dominated, are proven. The theoretical results are illustrated with several numerical experiments. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:193–212, 1998

[1]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[2]  B. Heinrich Finite Difference Methods on Irregular Networks , 1987 .

[3]  Endre Süli,et al.  Finite Volume Methods and their Analysis , 1991 .

[4]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[5]  Joseph W. Jerome,et al.  L∞ stability of finite element approximations to elliptic gradient equations , 1990 .

[6]  Panayot S. Vassilevski,et al.  Finite Difference Schemes on Triangular Cell-Centered Grids with Local Refinement , 1992, SIAM J. Sci. Comput..

[7]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[8]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[9]  Andrew B. White,et al.  Supra-convergent schemes on irregular grids , 1986 .

[10]  Thomas A. Manteuffel,et al.  The numerical solution of second-order boundary value problems on nonuniform meshes , 1986 .

[11]  A. Weiser,et al.  On convergence of block-centered finite differences for elliptic-problems , 1988 .

[12]  Stephen F. McCormick,et al.  Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.

[13]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[14]  R. Herbin,et al.  An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .

[15]  Endre Süli The accuracy of cell vertex finite volume methods on quadrilateral meshes , 1992 .

[16]  O. C. Zienkiewicz,et al.  An ‘upwind’ finite element scheme for two‐dimensional convective transport equation , 1977 .

[17]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[18]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[19]  Y. M. Chen,et al.  Modeling reservoir geometry with irregular grids , 1991 .

[20]  K. W. Morton,et al.  Finite volume solutions of convection-diffusion test problems , 1993 .

[21]  P. Vassilevski,et al.  Local refinement techniques for elliptic problems on cell-centered grids. I. Error analysis , 1991 .

[22]  K. Aziz,et al.  Modeling Vertical and Horizontal Wells With Voronoi Grid , 1994 .

[23]  Panayot S. Vassilevski,et al.  Finite volume methods for convection-diffusion problems , 1996 .

[24]  D. Kershaw Differencing of the diffusion equation in Lagrangian hydrodynamic codes , 1981 .