Iconography : Safe management of actinides in the nuclear fuel cycle: Role of mineralogy

Abstract During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the “minor” actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239 Pu), a source of fissile material for nuclear weapons (e.g., 239 Pu and 237 Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239 Pu and 237 Np). There are two basic strategies for the disposition of these heavy elements: (1) to “burn” or transmute the actinides using nuclear reactors or accelerators; (2) to “sequester” the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A 2 B 2 O 7 (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

[1]  William J. Weber,et al.  Models and mechanisms of irradiation-induced amorphization in ceramics , 2000 .

[2]  Lumin Wang,et al.  Irradiation-induced amorphization: Effects of temperature, ion mass, cascade size, and dose rate , 2000 .

[3]  Peter C. Burns,et al.  The crystal chemistry of uranium , 1999 .

[4]  Kevin W. Eberman,et al.  Order-disorder phenomena in A2B2O7 pyrochlore oxides , 2000 .

[5]  Sergey V. Yudintsev,et al.  New actinide matrix with pyrochlore structure , 2001 .

[6]  P. E. Raison,et al.  Fundamental and technological aspects of actinide oxide pyrochlores: Relevance for immobilization matrices , 1999 .

[7]  George W. Arnold,et al.  Radiation Effects in Glasses Used for Immobilization of High-level Waste and Plutonium Disposition , 1997 .

[8]  W. J. Weber,et al.  Radiation effects in nuclear waste forms for high-level radioactive waste , 1995 .

[9]  Bryan C. Chakoumakos,et al.  Systematics of the pyrochlore structure type, ideal A2B2X6Y , 1984 .

[10]  Simon Turner,et al.  Uranium-series geochemistry , 2003 .

[11]  Peter C. Burns,et al.  U6+ MINERALS AND INORGANIC COMPOUNDS: INSIGHTS INTO AN EXPANDED STRUCTURAL HIERARCHY OF CRYSTAL STRUCTURES , 2005 .

[12]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[13]  William J. Weber,et al.  Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaZrTi2O7 , 1986 .

[14]  Robert J. Finch,et al.  Uranium : mineralogy, geochemistry and the environment , 1999 .

[15]  J. C. Mark,et al.  Explosive Properties of Reactor-Grade Plutonium , 2009 .

[16]  Hartmann,et al.  Radiation tolerance of complex oxides , 2000, Science.

[17]  William J. Weber,et al.  Theoretical study of disorder in Ti-substituted La 2 Zr 2 O 7 , 2002 .

[18]  Katherine L. Smith,et al.  Geochemical behaviour of host phases for actinides and fission products in crystalline ceramic nuclear waste forms , 2004, Geological Society, London, Special Publications.

[19]  Peter Stille,et al.  Energy, Waste and the Environment: A Geochemical Perspective , 2004 .

[20]  Neil L. Allan,et al.  Displacement cascades in Gd2Ti2O7 and Gd2Zr2O7: a molecular dynamics study , 2002 .

[21]  V. Venugopal,et al.  Preparation and characterisation of Pu-pyrochlore: [La1−xPux]2 Zr2O7 (x=0–1) , 2000 .

[22]  William J. Weber,et al.  Actinide Waste Forms and Radiation Effects , 2010 .

[23]  Rodney C. Ewing,et al.  Plutonium and “minor” actinides: safe sequestration , 2005 .

[24]  Lars Stixrude,et al.  First-principles calculation of defect-formation energies in the Y 2 (Ti,Sn,Zr) 2 O 7 pyrochlore , 2004 .

[25]  Peter C. Burns,et al.  U (super 6+) minerals and inorganic phases; a comparison and hierarchy of crystal structures , 1996 .

[26]  Keld Alstrup Jensen,et al.  The Okélobondo natural fission reactor, southeast Gabon: Geology, mineralogy, and retardation of nuclear-reaction products , 2001 .

[27]  Lumin Wang,et al.  Ion irradiation-induced phase transformation of pyrochlore and zirconolite , 1999 .

[28]  William J. Weber,et al.  Radiation Effects in Zircon , 2003 .

[29]  Janusz Janeczek,et al.  Mineralogy and geochemistry of natural fission reactors in Gabon , 1999 .

[30]  Jie Lian,et al.  Ion-beam irradiation of Gd_2Sn_2O_7 and Gd_2Hf_2O_7 pyrochlore: Bond-type effect , 2004 .

[31]  Jie Lian,et al.  Formation Enthalpies of Rare Earth Titanate Pyrochlores , 2004 .

[32]  Robert H. Williams,et al.  How to Expand Nuclear Power Without Proliferation , 1990 .

[33]  R C Ewing,et al.  Nuclear waste forms for actinides. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Rodney C. Ewing,et al.  Radioactive Waste Forms for the Future , 1988 .

[35]  Jie Lian,et al.  Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides , 2004 .

[36]  Bryan C. Chakoumakos,et al.  Crystal Chemical Constraints on the Formation of Actinide Pyrochlores , 1984 .

[37]  G. Lumpkin,et al.  Ceramic waste forms for actinides , 2006 .

[38]  Rodney C. Ewing,et al.  THE DESIGN AND EVALUATION OF NUCLEAR-WASTE FORMS: CLUES FROM MINERALOGY , 2001 .

[39]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[40]  Rodney C. Ewing,et al.  MgO–pyrochlore composite as an inert matrix fuel: Neutronic and thermal characteristics , 2009 .

[41]  Sergey V. Yudintsev,et al.  Synthesis and Examination of New Actinide Pyrochlores , 2002 .

[42]  Jian Chen,et al.  Radiation-induced amorphization of rare-earth titanate pyrochlores , 2003 .

[43]  Jie Lian,et al.  Ion-irradiation-induced amorphization of La 2 Zr 2 O 7 pyrochlore , 2002 .

[44]  R. Taylor,et al.  The immobilization of high level radioactive wastes using ceramics and glasses , 1997 .

[45]  Jie Lian,et al.  Ion Beam-Induced Amorphization of the Pyrochlore Structure-Type: A Review , 2003 .

[46]  T. H. Fanning,et al.  Separations and Transmutation Criteria to Improve Utilization of a Geologic Repository , 2006 .

[47]  Jie Lian,et al.  Ion beam irradiation in La2Zr2O7–Ce2Zr2O7 pyrochlore , 2004 .

[48]  William J. Weber,et al.  Self-radiation damage in Gd2Ti2O7 , 1985 .

[49]  Brett A. Hunter,et al.  Structural and Bonding Trends in Tin Pyrochlore Oxides , 1997 .

[50]  William J. Weber,et al.  Computer simulation of Pu3+ and Pu4+ substitutions in gadolinium zirconate , 2001 .

[51]  Wolfgang Runde,et al.  Geochemical interactions of actinides in the environment. , 2000 .

[52]  Rodney C. Ewing,et al.  Radiation-Induced Amorphization , 2000 .

[53]  Rodney C. Ewing,et al.  Environmental impact of the nuclear fuel cycle , 2004, Geological Society, London, Special Publications.

[54]  William J. Weber,et al.  Radiation stability of gadolinium zirconate: A waste form for plutonium disposition , 1999 .

[55]  G. Lumpkin,et al.  Alpha-decay damage and aqueous durability of actinide host phases in natural systems , 2001 .