Design of an FBG based-on sensor device for large displacement deformation

This article deals with the modeling of a strain-displacement transducer conceived for extending the FBG measurement range. The intrinsic fragility of the optical fiber limits their application to cases characterized by relatively small deformations. To extend the employ to the large displacement field (i.e. morphing applications), a dedicated device was conceived, constituted by a circular ring connected to the structure and laterally integrated with a FBG sensor. This device was mathematically modeled minimizing the potential energy this way arriving at a description of the displacement and deformation field along the curvilinear abscissa. The theoretical predictions were then validated through the FE approach, arriving to precious design and operative considerations on the use of the device itself.