Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors

Good bacteria help fight cancer Resident gut bacteria can affect patient responses to cancer immunotherapy (see the Perspective by Jobin). Routy et al. show that antibiotic consumption is associated with poor response to immunotherapeutic PD-1 blockade. They profiled samples from patients with lung and kidney cancers and found that nonresponding patients had low levels of the bacterium Akkermansia muciniphila. Oral supplementation of the bacteria to antibiotic-treated mice restored the response to immunotherapy. Matson et al. and Gopalakrishnan et al. studied melanoma patients receiving PD-1 blockade and found a greater abundance of “good” bacteria in the guts of responding patients. Nonresponders had an imbalance in gut flora composition, which correlated with impaired immune cell activity. Thus, maintaining healthy gut flora could help patients combat cancer. Science, this issue p. 91, p. 104, p. 97; see also p. 32 Gut bacteria influence patient response to cancer therapy. Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizable minority of cancer patients. We found that primary resistance to ICIs can be attributed to abnormal gut microbiome composition. Antibiotics inhibited the clinical benefit of ICIs in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICIs into germ-free or antibiotic-treated mice ameliorated the antitumor effects of PD-1 blockade, whereas FMT from nonresponding patients failed to do so. Metagenomics of patient stool samples at diagnosis revealed correlations between clinical responses to ICIs and the relative abundance of Akkermansia muciniphila. Oral supplementation with A. muciniphila after FMT with nonresponder feces restored the efficacy of PD-1 blockade in an interleukin-12–dependent manner by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into mouse tumor beds.

Laurence Zitvogel | Matthew D. Hellmann | Nicolas Pons | Eric Deutsch | Didier Raoult | Guido Kroemer | Florence Levenez | Gérard Zalcman | Laura Mezquita | E. Le Chatelier | F. Levenez | N. Pons | P. Opolon | L. Zitvogel | G. Kroemer | D. Raoult | B. Ryffel | A. Eggermont | J. Soria | M. Hellmann | E. Deutsch | G. Zalcman | F. Goldwasser | C. Klein | F. Ghiringhelli | Y. Loriot | N. Galleron | C. Richard | M. Messaoudene | B. Routy | L. Mezquita | Benoît Quinquis | M. Alou | H. Rizvi | Kristina Iribarren | C. Duong | R. Daillère | C. Flament | M. Roberti | V. poirier-colame | N. Jacquelot | L. Albiges | Hira Rizvi | Yohann Loriot | Jean-Charles Soria | Alexander Eggermont | Benoit Quinquis | V. Minard-Colin | François Ghiringhelli | Véronique Minard-Colin | Paule Opolon | Bernhard Ryffel | S. Brosseau | L. Derosa | A. Fluckiger | C. Rauber | M. Fidelle | L. Mondragón | B. Qu | G. Ferrere | C. Clémenson | J. R. Masip | C. Naltet | C. Kaderbhai | P. Gonin | B. Escudier | Laurence Albiges | Christophe Klein | Caroline Flament | Bernard Escudier | Connie P. M. Duong | Nathalie Galleron | François Goldwasser | Emmanuelle Le Chatelier | Romain Daillère | Vichnou Poirier-Colame | Laura Mondragón | Bertrand Routy | Lisa Derosa | Maryam Tidjani Alou | Aurélie Fluckiger | Meriem Messaoudene | Conrad Rauber | Maria P. Roberti | Marine Fidelle | Kristina Iribarren | Nicolas Jacquelot | Bo Qu | Gladys Ferrere | Céline Clémenson | Jordi Remon Masip | Charles Naltet | Solenn Brosseau | Coureche Kaderbhai | Corentin Richard | Patrick Gonin | B. Quinquis | E. Deutsch | Gladys Ferrere | Romain Daillère | D. Raoult | Marine Fidelle

[1]  F. Marincola,et al.  Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment , 2013, Science.

[2]  R. Khanin,et al.  Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  A. Ribas,et al.  Combination cancer immunotherapies tailored to the tumour microenvironment , 2016, Nature Reviews Clinical Oncology.

[4]  C. Rudin,et al.  Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. , 2015, The New England journal of medicine.

[5]  P. Rosenstiel,et al.  Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. , 2016, Immunity.

[6]  F. Ginhoux,et al.  Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota , 2015, Science.

[7]  Nadeem Riaz,et al.  Recurrent SERPINB3 and SERPINB4 Mutations in Patients that Respond to Anti-CTLA4 Immunotherapy , 2016, Nature Genetics.

[8]  L. Schwartz,et al.  New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). , 2009, European journal of cancer.

[9]  T. Gajewski,et al.  Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity , 2015, Nature.

[10]  Eric Vivier,et al.  The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide , 2013, Science.

[11]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[12]  I. Mellman,et al.  Elements of cancer immunity and the cancer–immune set point , 2017, Nature.

[13]  A. Ravaud,et al.  Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. , 2015, The New England journal of medicine.

[14]  W. M. Vos,et al.  Intestinal Integrity and Akkermansia muciniphila, a Mucin-Degrading Member of the Intestinal Microbiota Present in Infants, Adults, and the Elderly , 2007, Applied and Environmental Microbiology.

[15]  Martin J. Blaser,et al.  Antibiotic use and its consequences for the normal microbiome , 2016, Science.

[16]  Martin L. Miller,et al.  Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer , 2015, Science.

[17]  Axel Hoos,et al.  Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. , 2011, The New England journal of medicine.

[18]  Joe Y. Chang,et al.  Suppression of Type I IFN Signaling in Tumors Mediates Resistance to Anti-PD-1 Treatment That Can Be Overcome by Radiotherapy. , 2017, Cancer research.

[19]  D. Pardoll Cancer and the Immune System: Basic Concepts and Targets for Intervention. , 2015, Seminars in oncology.

[20]  J. Wolchok,et al.  Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. , 2016, JAMA.

[21]  M. Socinski,et al.  First‐Line Nivolumab in Stage IV or Recurrent Non–Small‐Cell Lung Cancer , 2017, The New England journal of medicine.

[22]  Tim D Spector,et al.  Proton pump inhibitors alter the composition of the gut microbiota , 2015, Gut.

[23]  J. Doré,et al.  Direct Analysis of Genes Encoding 16S rRNA from Complex Communities Reveals Many Novel Molecular Species within the Human Gut , 1999, Applied and Environmental Microbiology.

[24]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[25]  Jason B. Williams,et al.  Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy , 2015, Science.

[26]  Steven A. Rosenberg,et al.  Adoptive immunotherapy for cancer: harnessing the T cell response , 2012, Nature Reviews Immunology.

[27]  T. Schumacher,et al.  Neoantigens in cancer immunotherapy , 2015, Science.

[28]  C. Benoist,et al.  Mining the Human Gut Microbiota for Immunomodulatory Organisms , 2017, Cell.

[29]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[30]  M. Millenson,et al.  PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. , 2015, The New England journal of medicine.

[31]  P. Bork,et al.  Richness of human gut microbiome correlates with metabolic markers , 2013, Nature.

[32]  Mathieu Almeida,et al.  Dietary intervention impact on gut microbial gene richness , 2013, Nature.

[33]  David C. Smith,et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. , 2012, The New England journal of medicine.

[34]  Shohei Koyama,et al.  Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints , 2016, Nature Communications.

[35]  S. Brisse,et al.  AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. , 2013, Genomics.