A Tutorial on Numerical Methods for State and Parameter Estimation in Nonlinear Dynamic Systems

In this chapter we provide a tutorial on state of the art numerical methods for state and parameter estimation in nonlinear dynamic systems. Here, we concentrate on the case that the underlying models are based on first-principles, giving rise to systems of ordinary differential equations (ODEs). As a general introduction the different dynamic model types, the generic modeling cycle and several approaches for dynamic optimization, i.e., optimization problems with dynamic systems as constraints, are briefly mentioned. Then, the estimation problem is posed as a maximum likelihood dynamic optimization problem. Afterwards, we review Multiple Shooting techniques and generalized Gauss-Newton methods for general least-squares and L1-norm optimization problems and discuss the benefits of the recently developed Lifted Newton Method in the context of state and parameter estimation. Finally, we present an illustrative example involving the estimation of the states and parameters of a pendulum using the freely available software environment ACADO Toolkit in which many of the discussed algorithms are implemented.

[1]  Victor M. Zavala,et al.  Optimization-based strategies for the operation of low-density polyethylene tubular reactors: nonlinear model predictive control , 2009, Comput. Chem. Eng..

[2]  Eva Balsa-Canto,et al.  COMPUTING OPTIMAL DYNAMIC EXPERIMENTS FOR MODEL CALIBRATION IN PREDICTIVE MICROBIOLOGY , 2008 .

[3]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[4]  Stephen M. Robinson,et al.  Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms , 1974, Math. Program..

[5]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[6]  Moritz Diehl,et al.  The Lifted Newton Method and Its Application in Optimization , 2009, SIAM J. Optim..

[7]  Johannes P. Schlöder,et al.  Robust Parameter Estimation for Identifying Satellite Injection Orbits , 2003, HPSC.

[8]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[9]  Moritz Diehl,et al.  Local Convergence of Sequential Convex Programming for Nonconvex Optimization , 2010 .

[10]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[11]  Bart De Moor,et al.  A convex approximation for parameter estimation involving parameter-affine dynamic models , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[12]  Peter Deuflhard,et al.  Numerical Treatment of Inverse Problems in Differential and Integral Equations: Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 - September 3, 1982 , 2012 .

[13]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[14]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[15]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[16]  Eva Balsa-Canto,et al.  An iterative identification procedure for dynamic modeling of biochemical networks , 2010, BMC Systems Biology.

[17]  Johannes P. Schlöder,et al.  Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung , 1988 .

[18]  Victor M. Zavala,et al.  Optimization-based strategies for the operation of low-density polyethylene tubular reactors: Moving horizon estimation , 2009, Comput. Chem. Eng..

[19]  Stefan Körkel,et al.  Numerical Methods for Nonlinear Experimental Design , 2003, HPSC.

[20]  Filip Logist,et al.  Fast Pareto set generation for nonlinear optimal control problems with multiple objectives , 2010 .

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[22]  K Bernaerts,et al.  Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments. , 2008, International journal of food microbiology.

[23]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[24]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[25]  G. R. Sullivan,et al.  The development of an efficient optimal control package , 1978 .

[26]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[27]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[28]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[29]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[30]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty , 2003, Comput. Chem. Eng..

[31]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[32]  Rolf Rannacher,et al.  Modeling, Simulation and Optimization of Complex Processes: Proceedings of the International Conference on High Performance Scientific Computing, March 10-14, 2003, Hanoi, Vietnam , 2005 .

[33]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[34]  M. Diehl,et al.  Fast reduced multiple shooting methods for nonlinear model predictive control , 2007 .

[35]  Toshiyuki Ohtsuka Nonlinear Receding-Horizon State Estimation with Unknown Disturbances , 1999 .

[36]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[37]  Roos D. Servaes,et al.  Optimal temperature input design for estimation of the square root model parameters: parameter accuracy and model validity restrictions. , 2002, International journal of food microbiology.

[38]  Bart De Moor,et al.  An automatic initialization procedure in parameter estimation problems with parameter-affine dynamic models , 2010, Comput. Chem. Eng..

[39]  W. Näther Optimum experimental designs , 1994 .

[40]  M. R. Osborne On shooting methods for boundary value problems , 1969 .

[41]  Jan Van Impe,et al.  Optimal experiment design for parameter estimation of the Ratkowsky Square Root model: parameter accuracy versus model validity restrictions , 2000 .

[42]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..