Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods

Nanocrystalline yttrium aluminium garnet (YAG, Y3Al5O12) and Ce-doped YAG ceramics were synthesized by two ‘soft chemistry' sol–gel processes using (i) mixtures of inorganic salts or oxides and (ii) mixtures of alkoxides of the respective elements. In the first approach the metal ions, generated by dissolving metal oxides or nitrates in acetic acid and/or water, were complexed by ethylene glycol to obtain the precursors for pure and doped YAG samples. In the alkoxide route monolithic gels were obtained by hydrolysis and condensation of a compositional mixture of Al, Y and Ce alkoxides in a PriOH solution. The molecular level mixing and the tendency of partially hydrolysed alkoxide species to form extended networks of cross-linked metal centers facilitates the structure evolution thereby lowering the crystallization temperature, in the latter case. The X-ray diffraction (XRD) patterns of the ceramic sintered at 700 °C were identical with the stoichiometric YAG composition which is the lowest temperature reported for the synthesis of crystalline and single phase Y3Al5O12 while well developed YAG phases in the non-alkoxide synthesis were obtained only at 1000 °C. Cerium doped YAG powders (CeO2 + Y3Al5O12) were synthesized using [NH4]2[Ce(NO3)6] (8 mol%) and [Ce3(OBut)9(ButOH)2] (5 mol%), as dopants. A homogeneous distribution of cerium in the YAG lattice was achieved in both cases. The thermal behaviour, phase transformations, composition and microstructural features in the gels and polycrystalline samples were studied by TG/DTA, XRD, FT-IR, solid-state 27Al MAS NMR spectroscopy, SEM, TEM, energy dispersive X-ray analysis and high resolution electron microscopy studies. The quality of the resulting products (homogeneity, crystallization temperature, grain size, grain size distribution, etc.) and economical aspects (synthetic skill, cost of precursors, etc.) of the two approaches are discussed.

[1]  S. Overbury,et al.  Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces , 1998 .

[2]  Yanchun Zhou,et al.  Effect of redox reaction on the sintering behavior of cerium oxide , 1997 .

[3]  A. Heuer,et al.  Phase Equilibration in ZrO2‐Y2O3 Alloys by Liquid‐Film Migration , 1986 .

[4]  L. Hench,et al.  The sol-gel process , 1990 .

[5]  G. R. Rama Rao,et al.  Structural evolution in alumina gel , 1987 .

[6]  R. Hempelmann,et al.  Synthesis and microstructure of nanostructured Al/Al2O3 (H)-composite , 1996, Journal of Materials Science.

[7]  K. Schierbaum,et al.  The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study , 1994 .

[8]  J. D’Haen,et al.  Study of different chemical methods to prepare ceramic high-temperature superconductors , 1998 .

[9]  Jenn‐Ming Yang,et al.  Fracture behavior of directionally solidified Y3Al5O12/Al2O3 eutectic fiber , 1996 .

[10]  P. Colomban Structure of oxide gels and glasses by infrared and raman scattering , 1989 .

[11]  M. Veith,et al.  SYNTHESE UND XPS-ANALYSE VON NANO-SKALIGEN METALL/METALLOXID-KOMPOSITEN MIT GERMANIUM, ZINN UND BLEI ALS METALLISCHE KOMPONENTE , 1997 .

[12]  J. Halloran,et al.  Synthesis of yttrium aluminum garnet from yttrium and aluminum isobutyrate precursors , 1996 .

[13]  L. Hubert-Pfalzgraf,et al.  Chemistry of yttrium triisopropoxide revisited. Characterization and crystal structure of Y5(.mu.5-O)(.mu.3-OPr-iso)4(.mu.2-OPr-iso)4(OPr-iso)5 , 1989 .

[14]  S. Mathur,et al.  NEW PERSPECTIVES IN THE TAILORING OF HETERO (BI- AND TRI-) METALLIC ALKOXIDE DERIVATIVES , 1998 .

[15]  U. Tripathi,et al.  Recent advances in alkoxo and aryloxo chemistry of scandium, yttrium and lanthanoids , 1991 .

[16]  M. Rahaman,et al.  Sol-gel processing and sintering of yttrium aluminum garnet (YAG) powders , 1996, Journal of Materials Science.

[17]  Kunio Yoshida,et al.  Synthesis of Nd3+,Cr3+‐codoped YAG Ceramics for High‐Efficiency Solid‐State Lasers , 1995 .

[18]  A. Kareiva,et al.  Sol-gel synthesis and superconducting properties of HgBa2CaCu2O6+δ , 1995 .

[19]  H. Kingb,et al.  アルミン酸イットリウム(YAG)繊維の製作 , 1993 .

[20]  Kunio Yoshida,et al.  Transparent Cr4+‐Doped YAG Ceramics for Tunable Lasers , 1996 .

[21]  J. Halloran,et al.  Polycrystalline Yttrium Aluminum Garnet Fibers from Colloidal Sols , 1995 .

[22]  S. Kneip,et al.  New metal-ceramic composites grown by metalorganic chemical vapour deposition , 1994 .

[23]  W. Blumenthal,et al.  High‐Temperature Deformation of Single‐Crystal Yttrium‐Aluminum Garnet (YAG) , 1996 .

[24]  Leena‐Sisko Johansson,et al.  An XPS Study of SrS:Ce Thin Films for Electroluminescent Devices , 1998 .

[25]  A. M. George,et al.  Formation of YAG from coprecipitated yttrium aluminium hydroxides , 1996 .

[26]  G. Corman Creep of yttrium aluminium garnet single crystals , 1993 .