Efficient extreme ultraviolet emission from one-dimensional spherical plasmas produced by multiple lasers

We demonstrate high conversion efficiency for extreme ultraviolet (EUV) emission at 6.5–6.7 nm from multiple laser beam-produced one-dimensional spherical plasmas. Multiply charged-state ions produce strong resonance emission lines, which combine to yield intense unresolved transition arrays (UTAs) in Gd, Tb, and Mo. At an optimum laser intensity of 1 × 1012 W/cm2, which is estimated to yield an electron temperature of around 100 eV, the maximum in-band EUV conversion efficiency (CE) was observed to be 0.8%, which is one of the highest values ever reported due to the reduction of plasma expansion loss.

[1]  Taisuke Miura,et al.  Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas. , 2013, Optics express.

[2]  G. Tonon,et al.  X‐ray emission in laser‐produced plasmas , 1973 .

[3]  Frank Barkusky,et al.  Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source , 2008 .

[4]  K. Koshelev,et al.  Physical processes in EUV sources for microlithography , 2011 .

[5]  Bowen Li,et al.  Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma , 2012 .

[6]  Hiroshi Azechi,et al.  Irradiation nonuniformity due to imperfections of laser beams , 1993 .

[7]  S. Hädrich,et al.  Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. , 2007, Physical review letters.

[8]  M. Richardson,et al.  Laser-plasma source parameters for Kr, Gd, and Tb ions at 6.6 nm , 2013 .

[9]  S S Churilov,et al.  EUV spectra of Gd and Tb ions excited in laser-produced and vacuum spark plasmas , 2009 .

[10]  Judon Stoeldraijer,et al.  From performance validation to volume introduction of ASML's NXE platform , 2012, Advanced Lithography.

[11]  C. Cerjan,et al.  Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime , 1996 .

[12]  A. Endo,et al.  Laser-produced-plasma light source development for extreme ultraviolet lithography , 2003 .

[13]  M. Gu,et al.  Indirect X-Ray Line-Formation Processes in Iron L-Shell Ions , 2003 .

[14]  Takayasu Mochizuki,et al.  Nd-doped phosphate glass laser systems for laser-fusion research , 1981 .

[15]  H. Hertz,et al.  High‐resolution compact X‐ray microscopy , 2007, Journal of microscopy.

[16]  Shinsuke Fujioka,et al.  Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams , 2005 .

[17]  Bowen Li,et al.  Tuning extreme ultraviolet emission for optimum coupling with multilayer mirrors for future lithography through control of ionic charge states , 2014 .

[18]  A. Endo,et al.  Investigation of Gd and Tb plasmas for beyond extreme ultraviolet lithography based on multilayer mirror performance , 2012 .

[19]  G. O'Sullivan,et al.  Ground-state configurations of ionic species I through XVI for Z=57-74 and the interpretation of 4d-4f emission resonances in laser-produced plasmas , 1982 .

[20]  R. H. Stulen,et al.  Extreme ultraviolet lithography , 1998 .

[21]  Toyohiko Yatagai,et al.  Rare-earth plasma extreme ultraviolet sources at 6.5―6.7 nm , 2010 .

[22]  Bowen Li,et al.  Extreme ultraviolet source at 6.7 nm based on a low-density plasma , 2011 .