Curvelet imaging and processing : adaptive multiple elimination

Predictive multiple suppression methods consist of two main steps: a prediction step, in which multiples are predicted from the seismic data, and a subtraction step, in which the predicted multiples are matched with the true multiples in the data. The last step appears crucial in practice: an incorrect adaptive subtraction method will cause multiples to be sub-optimally subtracted or primaries being distorted, or both. Therefore, we propose a new domain for separation of primaries and multiples via the Curvelet transform. This transform maps the data into almost orthogonal localized events with a directional and spatial-temporal component. The multiples are suppressed by thresholding the input data at those Curvelet components where the predicted multiples have large amplitudes. In this way the more traditional filtering of predicted multiples to fit the input data is avoided. An initial field data example shows a considerable improvement in multiple suppression.

[1]  E. Candès New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .

[2]  W. S. Ross Multiple suppression: Beyond 2‐D. Part I: Theory , 1997 .

[3]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[4]  Wave‐equation extrapolation‐based multiple attenuation: 2-D filtering in the f-k domain , 1994 .

[5]  D. J. Verschuur,et al.  Estimation of multiple scattering by iterative inversion, Part I: Theoretical considerations , 1997 .

[6]  S. Mallat A wavelet tour of signal processing , 1998 .

[7]  Felix J. Herrmann,et al.  Optimal Seismic Imaging With Curvelets , 2003 .

[8]  D. J. Verschuur,et al.  Adaptive surface-related multiple elimination , 1992 .

[9]  E. Candès,et al.  Curvelets and Fourier Integral Operators , 2003 .

[10]  D. J. Verschuur,et al.  Estimation of multiple scattering by iterative inversion; Part II, Practical aspects and examples , 1997 .

[11]  Ray Abma,et al.  Weighted subtraction for diffracted multiple attenuation , 2003 .

[12]  Felix J. Herrmann,et al.  Multifractional splines: application to seismic imaging , 2003, SPIE Optics + Photonics.

[13]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[14]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[15]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[16]  Tom Lyche,et al.  Curves and Surfaces , 2014, Lecture Notes in Computer Science.

[17]  Hart F. Smith Wave equations with low regularity coefficients. , 1998 .

[18]  Multiple Attenuation Using an Apex-shifted Radon Transform , 2003 .

[19]  Seung Yoo,et al.  An Analysis of 2D And 3D In Verse Scattering Multiple Attenuation , 2000 .

[20]  Mauricio D. Sacchi,et al.  Latest views of the sparse Radon transform , 2003 .