Function-Based Algebraic Multigrid Method for the 3D Poisson Problem on Structured Meshes
暂无分享,去创建一个
[1] T. Huckle,et al. Frobenius norm minimization and probing for preconditioning , 2007 .
[2] Hendrik Speleers,et al. Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..
[3] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[4] Marco Donatelli,et al. Multigrid methods for Toeplitz linear systems with different size reduction , 2010, 1010.5730.
[5] Carlo Garoni,et al. Generalized locally Toeplitz sequences : Theory and applications , 2017 .
[6] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .
[7] Stefano Serra Capizzano,et al. Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..
[8] Carlo Garoni,et al. Generalized Locally Toeplitz Sequences , 2017 .
[9] T. Huckle. Approximate sparsity patterns for the inverse of a matrix and preconditioning , 1999 .
[10] B. Wehrfritz. Remarks on Azarov’s work on soluble groups of finite rank , 2016 .
[11] O. Axelsson. Iterative solution methods , 1995 .
[12] Stefan Vandewalle,et al. Multigrid Waveform Relaxation for Anisotropic Partial Differential Equations , 2002, Numerical Algorithms.
[13] YereminA. Yu.,et al. Factorized sparse approximate inverse preconditionings I , 1993 .
[14] Stefano Serra,et al. Multigrid methods for toeplitz matrices , 1991 .
[15] Peter Arbenz,et al. Large scale micro finite element analysis of 3D bone poroelasticity , 2014, Parallel Comput..
[16] S. A. Kharchenko,et al. A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form , 2001, Numer. Linear Algebra Appl..
[17] Stefano Serra Capizzano,et al. Function-based block multigrid strategy for a two-dimensional linear elasticity-type problem , 2017, Comput. Math. Appl..
[18] Stefano Serra Capizzano,et al. A note on algebraic multigrid methods for the discrete weighted Laplacian , 2008, Comput. Math. Appl..
[19] E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering , 1996 .
[20] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..
[21] Sverker Holmgren,et al. Multidimensional Performance and Scalability Analysis for Diverse Applications Based on System Monitoring Data , 2017, PPAM.
[22] M. Benzi,et al. A comparative study of sparse approximate inverse preconditioners , 1999 .
[23] Marco Donatelli,et al. Multigrid methods for (multilevel) structured matrices associated with a symbol and related applications , 2013 .
[24] Marcus J. Grote,et al. Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..
[25] Yvan Notay,et al. Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[26] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[27] Edmond Chow,et al. A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..
[28] L. Kolotilina,et al. Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..
[29] Marco Donatelli,et al. Multigrid methods for cubic spline solution of two point (and 2D) boundary value problems , 2016 .
[30] Stefano Serra Capizzano,et al. V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..