Function-Based Algebraic Multigrid Method for the 3D Poisson Problem on Structured Meshes

Multilevel methods, such as Geometric and Algebraic Multigrid, Algebraic Multilevel Iteration, Domain Decomposition-type methods have been shown to be the methods of choice for solving linear systems of equations, arising in many areas of Scientific Computing. The methods, in particular the multigrid methods, have been efficiently implemented in serial and parallel and are available via many scientific libraries.

[1]  T. Huckle,et al.  Frobenius norm minimization and probing for preconditioning , 2007 .

[2]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..

[3]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[4]  Marco Donatelli,et al.  Multigrid methods for Toeplitz linear systems with different size reduction , 2010, 1010.5730.

[5]  Carlo Garoni,et al.  Generalized locally Toeplitz sequences : Theory and applications , 2017 .

[6]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .

[7]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[8]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences , 2017 .

[9]  T. Huckle Approximate sparsity patterns for the inverse of a matrix and preconditioning , 1999 .

[10]  B. Wehrfritz Remarks on Azarov’s work on soluble groups of finite rank , 2016 .

[11]  O. Axelsson Iterative solution methods , 1995 .

[12]  Stefan Vandewalle,et al.  Multigrid Waveform Relaxation for Anisotropic Partial Differential Equations , 2002, Numerical Algorithms.

[13]  YereminA. Yu.,et al.  Factorized sparse approximate inverse preconditionings I , 1993 .

[14]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[15]  Peter Arbenz,et al.  Large scale micro finite element analysis of 3D bone poroelasticity , 2014, Parallel Comput..

[16]  S. A. Kharchenko,et al.  A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form , 2001, Numer. Linear Algebra Appl..

[17]  Stefano Serra Capizzano,et al.  Function-based block multigrid strategy for a two-dimensional linear elasticity-type problem , 2017, Comput. Math. Appl..

[18]  Stefano Serra Capizzano,et al.  A note on algebraic multigrid methods for the discrete weighted Laplacian , 2008, Comput. Math. Appl..

[19]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[20]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[21]  Sverker Holmgren,et al.  Multidimensional Performance and Scalability Analysis for Diverse Applications Based on System Monitoring Data , 2017, PPAM.

[22]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[23]  Marco Donatelli,et al.  Multigrid methods for (multilevel) structured matrices associated with a symbol and related applications , 2013 .

[24]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[25]  Yvan Notay,et al.  Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[26]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[27]  Edmond Chow,et al.  A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[28]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[29]  Marco Donatelli,et al.  Multigrid methods for cubic spline solution of two point (and 2D) boundary value problems , 2016 .

[30]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..