Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition

[1]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[2]  L. Merhari,et al.  Determination of the gas sensing potentiality of nanosized powders by ftir spectrometry , 2001 .

[3]  Steven M. George,et al.  Surface Chemistry for Atomic Layer Growth , 1996 .

[4]  M. Schuisky,et al.  In situ resistivity measurements during the atomic layer deposition of ZnO and W thin films , 2002 .

[5]  A. Chadwick,et al.  The effects of crystallite growth and dopant migration on the carbon monoxide sensing characteristics of nanocrystalline tin oxide based sensor materials , 1998 .

[6]  S. Morrison Surface Barrier Effects in Adsorption, Illustrated by Zinc Oxide , 1955 .

[7]  David E. Williams,et al.  Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides , 2000 .

[8]  Z. A. Ansari,et al.  Effect of MoO3 doping and grain size on SnO2-enhancement of sensitivity and selectivity for CO and H2 gas sensing , 2002 .

[9]  Steven M. George,et al.  Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition , 2003 .

[10]  S. George,et al.  SiO2 film growth at low temperatures by catalyzed atomic layer deposition in a viscous flow reactor , 2005 .

[11]  Steven M. George,et al.  Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques , 2003 .

[12]  Wolfgang Göpel,et al.  SnO2 sensors: current status and future prospects☆ , 1995 .

[13]  K. Hauffe The Application of the Theory of Semiconductors to Problems of Heterogeneous Catalysis , 1955 .

[14]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[15]  M. Ritala,et al.  Titanium isopropoxide as a precursor in atomic layer epitaxy of titanium dioxide thin films , 1993 .

[16]  A. H. Kahn,et al.  Theory of the Infrared Absorption of Carriers in Germanium and Silicon , 1955 .

[17]  Effects of Thickness and Calcination Temperature on Tin Dioxide Sol‐Derived Thin‐Film Sensor , 1995 .

[18]  L. Vasanelli,et al.  CO sensing properties of SnO2 thin films prepared by the sol-gel process , 1997 .

[19]  A. Gurlo,et al.  Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  Rajesh Kumar,et al.  Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties , 2007 .

[21]  H. Nalwa Handbook of thin film materials , 2002 .

[22]  Pekka Soininen,et al.  Growth of titanium dioxide thin films by atomic layer epitaxy , 1993 .

[23]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[24]  Henry Windischmann,et al.  A Model for the Operation of a Thin‐Film SnO x Conductance‐Modulation Carbon Monoxide Sensor , 1979 .

[25]  B. Reedy,et al.  Temperature modulation in semiconductor gas sensing , 1999 .

[26]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[27]  Martin Moskovits,et al.  Detection of CO and O2 Using Tin Oxide Nanowire Sensors , 2003 .

[28]  Chunling Zhu,et al.  The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures , 2006 .

[29]  Michel Boudart,et al.  Kinetics of Heterogeneous Catalytic Reactions , 1984 .

[30]  Lauri Niinistö,et al.  Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials , 2004 .

[31]  Yigal Komem,et al.  The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors , 2004 .

[32]  Ralf Riedel,et al.  In situ and operando spectroscopy for assessing mechanisms of gas sensing. , 2007, Angewandte Chemie.

[33]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[34]  Jordi Arbiol,et al.  In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors , 2004 .

[35]  Masahiro Nishikawa,et al.  Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films , 1982 .

[36]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[37]  Y. Liu,et al.  Nanosized tin oxide as the novel material with simultaneous detection towards CO, H2 and CH4 , 2000 .

[38]  F. Kruis,et al.  Size-dependent gas sensing properties of indium oxide nanoparticle layers. , 2007, Journal of nanoscience and nanotechnology.

[39]  C. Pijolat,et al.  Tin dioxide thin-film gas sensor prepared by chemical vapour deposition : Influence of grain size and thickness on the electrical properties , 1994 .

[40]  Tuomo Suntola,et al.  Atomic Layer Epitaxy , 1989 .

[41]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[42]  A. Rothschild,et al.  On the Relationship Between the Grain Size and Gas-Sensitivity of Chemo-Resistive Metal-Oxide Gas Sensors with Nanosized Grains , 2004 .

[43]  T. Kuan,et al.  Alteration of Cu conductivity in the size effect regime , 2004 .

[44]  A. Hårsta,et al.  Growth of SnO2 thin films by atomic layer deposition and chemical vapour deposition: A comparative study , 2006 .

[45]  D. Goodman,et al.  Structural and catalytic properties of model silica- supported palladium catalysts: a comparison to single crystal surfaces , 1994 .

[46]  Robert F. Savinell,et al.  Application of nano-crystalline porous tin oxide thin film for CO sensing , 1998 .

[47]  K. Kim,et al.  Electrical Properties and Gas‐Sensing Behavior of SnO2 Films Prepared by Chemical Vapor Deposition , 1991 .

[48]  Steven M. George,et al.  Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates , 2002 .

[49]  Alan W. Weimer,et al.  Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles , 2000 .

[50]  Steven M. George,et al.  Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition , 2002 .

[51]  S. Rembeza,et al.  Electrical Resistivity and Gas Response Mechanisms of Nanocrystalline SnO2 Films in a Wide Temperature Range , 2000 .

[52]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[53]  CO sensing properties of SnO{sub 2} thin films prepared by the sol-gel process , 1996 .

[54]  N. Bârsan,et al.  Grain size control in nanocrystalline In2O3 semiconductor gas sensors , 1997 .

[55]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[56]  Kengo Shimanoe,et al.  Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor , 2001 .

[57]  S. George,et al.  CO gas sensing by ultrathin tin oxide films grown by atomic layer deposition using transmission FTIR spectroscopy. , 2008, The journal of physical chemistry. A.

[58]  János Mizsei,et al.  How can sensitive and selective semiconductor gas sensors be made , 1995 .

[59]  A. Hårsta,et al.  New routes to SnO2 heteroepitaxy , 2002 .

[60]  J. Zemel Theoretical description of gas-film interaction on SnOx☆ , 1988 .

[61]  S. George,et al.  Mechanism of Pyridine-Catalyzed SiO2 Atomic Layer Deposition Studied by Fourier Transform Infrared Spectroscopy , 2007 .

[62]  Pekka Soininen,et al.  Perfectly Conformal TiN and Al2O3 Films Deposited by Atomic Layer Deposition , 1999 .

[63]  S. George,et al.  In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques , 2005 .

[64]  S. George,et al.  Surface chemistry and infrared absorbance changes during ZnO atomic layer deposition on ZrO2 and BaTiO3 particles , 2005 .

[65]  Sinclair S. Yee,et al.  Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors , 1995 .