Hodge theory for combinatorial geometries
暂无分享,去创建一个
[1] Karim A. Adiprasito,et al. Whitney numbers of arrangements via measure concentration of intrinsic volumes , 2016, 1606.09412.
[2] G. Mikhalkin,et al. Tropical Homology , 2016, 1604.01838.
[3] Emeric Gioan,et al. Combinatorial geometries: Matroids, oriented matroids and applications. Special issue in memory of Michel Las Vergnas , 2015, Eur. J. Comb..
[4] June Huh,et al. A tropical approach to the strongly positive Hodge conjecture , 2015 .
[5] June Huh,et al. A tropical approach to a generalized Hodge conjecture for positive currents , 2015, 1502.00299.
[6] Karim A. Adiprasito,et al. Filtered geometric lattices and Lefschetz Section Theorems over the tropical semiring , 2014, 1401.7301.
[7] Matthias Lenz,et al. The f-vector of a representable-matroid complex is log-concave , 2013, Adv. Appl. Math..
[8] June Huh,et al. Log-concavity of characteristic polynomials and the Bergman fan of matroids , 2011, 1104.2519.
[9] D. Maclagan,et al. Lower and upper bounds for nef cones , 2010, 1009.0220.
[10] June Huh,et al. Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs , 2010, 1008.4749.
[11] V. Batyrev,et al. The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces , 2009, 0911.3607.
[12] Sam Payne,et al. Realization Spaces for Tropical Fans , 2009, 0909.4582.
[13] Chris McDaniel. The strong Lefschetz property for coinvariant rings of finite reflection groups , 2009, 0909.4184.
[14] Dmitry N. Kozlov,et al. Combinatorial Algebraic Topology , 2007, Algorithms and computation in mathematics.
[15] E. Cattani. Mixed Lefschetz Theorems and Hodge-Riemann Bilinear Relations , 2007, 0707.1352.
[16] Martin Aigner,et al. A Course in Enumeration , 2007 .
[17] Dagmar M. Meyer,et al. Poincaré Duality Algebras, Macaulay's Dual Systems, and Steenrod Operations , 2005 .
[18] Caroline J. Klivans,et al. The Bergman complex of a matroid and phylogenetic trees , 2003, J. Comb. Theory, Ser. B.
[19] E. Feichtner,et al. Chow rings of toric varieties defined by atomic lattices , 2003, math/0305142.
[20] L. Migliorini,et al. The Hard Lefschetz Theorem and the topology of semismall maps , 2000, math/0006187.
[21] Carl W. Lee,et al. P.L.-Spheres, convex polytopes, and stress , 1996, Discret. Comput. Geom..
[22] Peter McMullen,et al. Weights on polytopes , 1996, Discret. Comput. Geom..
[23] C. Procesi,et al. Wonderful models of subspace arrangements , 1995 .
[24] W. Fulton,et al. Intersection theory on toric varieties , 1994, alg-geom/9403002.
[25] Peter McMullen,et al. On simple polytopes , 1993 .
[26] W. Fulton. Introduction to Toric Varieties. , 1993 .
[27] Ehud Hrushovski,et al. Unimodular Minimal Structures , 1992 .
[28] I. Gelfand,et al. A combinatorial formula for the Pontrjagin classes , 1992, math/9204231.
[29] W. Wessel. White, N. (ed.), Combinatorial Geometries. Cambridge etc., Cambridge University Press 1987. XII, 212 pp., $25.00 H/B, $39.50. ISBN 0521 33339 3 (Encyclopedia of Mathematics and Its Applications 29) , 1991, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.
[30] C. Procesi,et al. Cohomology of regular embeddings , 1990 .
[31] P. McMullen. The polytope algebra , 1989 .
[32] L. Billera. The algebra of continuous piecewise polynomials , 1989 .
[33] V. Danilov,et al. THE GEOMETRY OF TORIC VARIETIES , 1978 .
[34] Ihrer Grenzgebiete,et al. Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.
[35] S. G. Hoggar. Chromatic polynomials and logarithmic concavity , 1974 .
[36] R. C. Bose,et al. COMBINATORIAL MATHEMATICS AND ITS APPLICATIONS, PROCEEDINGS OF THE CONFERENCE HELD APRIL 10-14, 1967, , 1969 .
[37] M. Mišík,et al. Oxford University Press , 1968, PMLA/Publications of the Modern Language Association of America.
[38] H. Whitney. On the Abstract Properties of Linear Dependence , 1935 .
[39] H. Whitney. A logical expansion in mathematics , 1932 .
[40] Frank Wannemaker,et al. Arrangements Of Hyperplanes , 2016 .
[41] Tom Brylawski,et al. The broken-circuit complex , 1977 .
[42] G. Rota. On the Foundations of Combinatorial Theory , 2009 .
[43] R. Stanley. An Introduction to Hyperplane Arrangements , 2007 .
[44] B. Sturmfels,et al. Combinatorial Commutative Algebra , 2004 .
[45] Robert Lazarsfeld,et al. Positivity in algebraic geometry , 2004 .
[46] M. Brion. Piecewise polynomial functions, convex polytopes and enumerative geometry , 1996 .
[47] A. Pillay. Geometric Stability Theory , 1996 .
[48] W. Fulton,et al. Intersection Theory on Spherical Varieties , 1994 .
[49] Anders Björner,et al. Matroid Applications: Homology and Shellability of Matroids and Geometric Lattices , 1992 .
[50] Thomas Zaslavsky,et al. Combinatorial Geometries: The Möbius Function and the Characteristic Polynomial , 1987 .
[51] Joseph P. S. Kung,et al. A source book in matroid theory , 1985 .
[52] R. Read. An introduction to chromatic polynomials , 1968 .
[53] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[54] J. Neumann,et al. Continuous Geometry. , 1936, Proceedings of the National Academy of Sciences of the United States of America.
[55] G. Birkhoff. A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .
[56] Gian-Carlo ROTA. COMBINATORIAL THEORY , OLD AND NEW by , 2022 .