Hodge theory for combinatorial geometries

We prove the hard Lefschetz theorem and the Hodge-Riemann relations for a commutative ring associated to an arbitrary matroid M. We use the Hodge-Riemann relations to resolve a conjecture of Heron, Rota, and Welsh that postulates the log-concavity of the coefficients of the characteristic polynomial of M. We furthermore conclude that the f-vector of the independence complex of a matroid forms a log-concave sequence, proving a conjecture of Mason and Welsh for general matroids.

[1]  Karim A. Adiprasito,et al.  Whitney numbers of arrangements via measure concentration of intrinsic volumes , 2016, 1606.09412.

[2]  G. Mikhalkin,et al.  Tropical Homology , 2016, 1604.01838.

[3]  Emeric Gioan,et al.  Combinatorial geometries: Matroids, oriented matroids and applications. Special issue in memory of Michel Las Vergnas , 2015, Eur. J. Comb..

[4]  June Huh,et al.  A tropical approach to the strongly positive Hodge conjecture , 2015 .

[5]  June Huh,et al.  A tropical approach to a generalized Hodge conjecture for positive currents , 2015, 1502.00299.

[6]  Karim A. Adiprasito,et al.  Filtered geometric lattices and Lefschetz Section Theorems over the tropical semiring , 2014, 1401.7301.

[7]  Matthias Lenz,et al.  The f-vector of a representable-matroid complex is log-concave , 2013, Adv. Appl. Math..

[8]  June Huh,et al.  Log-concavity of characteristic polynomials and the Bergman fan of matroids , 2011, 1104.2519.

[9]  D. Maclagan,et al.  Lower and upper bounds for nef cones , 2010, 1009.0220.

[10]  June Huh,et al.  Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs , 2010, 1008.4749.

[11]  V. Batyrev,et al.  The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces , 2009, 0911.3607.

[12]  Sam Payne,et al.  Realization Spaces for Tropical Fans , 2009, 0909.4582.

[13]  Chris McDaniel The strong Lefschetz property for coinvariant rings of finite reflection groups , 2009, 0909.4184.

[14]  Dmitry N. Kozlov,et al.  Combinatorial Algebraic Topology , 2007, Algorithms and computation in mathematics.

[15]  E. Cattani Mixed Lefschetz Theorems and Hodge-Riemann Bilinear Relations , 2007, 0707.1352.

[16]  Martin Aigner,et al.  A Course in Enumeration , 2007 .

[17]  Dagmar M. Meyer,et al.  Poincaré Duality Algebras, Macaulay's Dual Systems, and Steenrod Operations , 2005 .

[18]  Caroline J. Klivans,et al.  The Bergman complex of a matroid and phylogenetic trees , 2003, J. Comb. Theory, Ser. B.

[19]  E. Feichtner,et al.  Chow rings of toric varieties defined by atomic lattices , 2003, math/0305142.

[20]  L. Migliorini,et al.  The Hard Lefschetz Theorem and the topology of semismall maps , 2000, math/0006187.

[21]  Carl W. Lee,et al.  P.L.-Spheres, convex polytopes, and stress , 1996, Discret. Comput. Geom..

[22]  Peter McMullen,et al.  Weights on polytopes , 1996, Discret. Comput. Geom..

[23]  C. Procesi,et al.  Wonderful models of subspace arrangements , 1995 .

[24]  W. Fulton,et al.  Intersection theory on toric varieties , 1994, alg-geom/9403002.

[25]  Peter McMullen,et al.  On simple polytopes , 1993 .

[26]  W. Fulton Introduction to Toric Varieties. , 1993 .

[27]  Ehud Hrushovski,et al.  Unimodular Minimal Structures , 1992 .

[28]  I. Gelfand,et al.  A combinatorial formula for the Pontrjagin classes , 1992, math/9204231.

[29]  W. Wessel White, N. (ed.), Combinatorial Geometries. Cambridge etc., Cambridge University Press 1987. XII, 212 pp., $25.00 H/B, $39.50. ISBN 0521 33339 3 (Encyclopedia of Mathematics and Its Applications 29) , 1991, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[30]  C. Procesi,et al.  Cohomology of regular embeddings , 1990 .

[31]  P. McMullen The polytope algebra , 1989 .

[32]  L. Billera The algebra of continuous piecewise polynomials , 1989 .

[33]  V. Danilov,et al.  THE GEOMETRY OF TORIC VARIETIES , 1978 .

[34]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[35]  S. G. Hoggar Chromatic polynomials and logarithmic concavity , 1974 .

[36]  R. C. Bose,et al.  COMBINATORIAL MATHEMATICS AND ITS APPLICATIONS, PROCEEDINGS OF THE CONFERENCE HELD APRIL 10-14, 1967, , 1969 .

[37]  M. Mišík,et al.  Oxford University Press , 1968, PMLA/Publications of the Modern Language Association of America.

[38]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[39]  H. Whitney A logical expansion in mathematics , 1932 .

[40]  Frank Wannemaker,et al.  Arrangements Of Hyperplanes , 2016 .

[41]  Tom Brylawski,et al.  The broken-circuit complex , 1977 .

[42]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[43]  R. Stanley An Introduction to Hyperplane Arrangements , 2007 .

[44]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[45]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .

[46]  M. Brion Piecewise polynomial functions, convex polytopes and enumerative geometry , 1996 .

[47]  A. Pillay Geometric Stability Theory , 1996 .

[48]  W. Fulton,et al.  Intersection Theory on Spherical Varieties , 1994 .

[49]  Anders Björner,et al.  Matroid Applications: Homology and Shellability of Matroids and Geometric Lattices , 1992 .

[50]  Thomas Zaslavsky,et al.  Combinatorial Geometries: The Möbius Function and the Characteristic Polynomial , 1987 .

[51]  Joseph P. S. Kung,et al.  A source book in matroid theory , 1985 .

[52]  R. Read An introduction to chromatic polynomials , 1968 .

[53]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[54]  J. Neumann,et al.  Continuous Geometry. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[55]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[56]  Gian-Carlo ROTA COMBINATORIAL THEORY , OLD AND NEW by , 2022 .