Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration

Mitochondria have a number of essential roles in neuronal function. Their complex mobility patterns within neurons are characterized by frequent changes in direction. Mobile mitochondria can become stationary or pause in regions that have a high metabolic demand and can move again rapidly in response to physiological changes. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Research into the mechanisms that regulate mitochondrial transport is thus an important emerging frontier.

[1]  J. Milbrandt,et al.  Mitofusin 2 Is Necessary for Transport of Axonal Mitochondria and Interacts with the Miro/Milton Complex , 2010, The Journal of Neuroscience.

[2]  Angela C. Poole,et al.  The PINK1/Parkin pathway regulates mitochondrial morphology , 2008, Proceedings of the National Academy of Sciences.

[3]  R. Zucker,et al.  Mitochondrial Involvement in Post-Tetanic Potentiation of Synaptic Transmission , 1997, Neuron.

[4]  Benedikt Westermann,et al.  Mitochondrial fusion and fission in cell life and death , 2010, Nature Reviews Molecular Cell Biology.

[5]  Seung-Jae Lee,et al.  Impairment of microtubule‐dependent trafficking by overexpression of α‐synuclein , 2006 .

[6]  E. Mandelkow,et al.  Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. , 1999, Journal of cell science.

[7]  N. Mizushima,et al.  Parkin Mediates Proteasome-dependent Protein Degradation and Rupture of the Outer Mitochondrial Membrane*♦ , 2011, The Journal of Biological Chemistry.

[8]  G. Spirou,et al.  Specialized Synapse-Associated Structures within the Calyx of Held , 2000, The Journal of Neuroscience.

[9]  N. Hirokawa,et al.  KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria , 1994, Cell.

[10]  W. Carroll,et al.  Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve , 1998, Acta Neuropathologica.

[11]  Priyanka Tiwari,et al.  Acute Impairment of Mitochondrial Trafficking by β-Amyloid Peptides in Hippocampal Neurons , 2006, Journal of Neuroscience.

[12]  G. Rutter,et al.  Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1 , 2004, Journal of Cell Science.

[13]  Ted M. Dawson,et al.  PINK1-dependent recruitment of Parkin to mitochondria in mitophagy , 2009, Proceedings of the National Academy of Sciences.

[14]  Jeffery N Agar,et al.  Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS , 2010, Nature Neuroscience.

[15]  Marianela Feliu,et al.  Human Myo19 Is a Novel Myosin that Associates with Mitochondria , 2009, Current Biology.

[16]  L. Chin,et al.  Hypertonia-associated protein Trak1 is a novel regulator of endosome-to-lysosome trafficking. , 2008, Journal of molecular biology.

[17]  Jian Feng,et al.  Parkin Stabilizes Microtubules through Strong Binding Mediated by Three Independent Domains* , 2005, Journal of Biological Chemistry.

[18]  J. Leterrier,et al.  Studies on the interaction between mitochondria and the cytoskeleton , 1989, Journal of bioenergetics and biomembranes.

[19]  D. Chan,et al.  Functions and dysfunctions of mitochondrial dynamics , 2007, Nature Reviews Molecular Cell Biology.

[20]  K. Lim,et al.  Jcb: Report , 2022 .

[21]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[22]  M. Rydmark,et al.  Axoplasmic organelles at nodes of Ranvier. II. Occurrence and distribution in large myelinated spinal cord axons of the adult cat , 1993, Journal of neurocytology.

[23]  P. Janmey,et al.  Mechanisms of Mitochondria-Neurofilament Interactions , 2003, The Journal of Neuroscience.

[24]  E. Barrett,et al.  Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals , 2003, The Journal of physiology.

[25]  S. Budd,et al.  Mitochondria and neuronal survival. , 2000, Physiological reviews.

[26]  Qian Cai,et al.  Snapin-Regulated Late Endosomal Transport Is Critical for Efficient Autophagy-Lysosomal Function in Neurons , 2010, Neuron.

[27]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[28]  P. Hollenbeck,et al.  Evidence That Myosin Activity Opposes Microtubule-Based Axonal Transport of Mitochondria , 2010, The Journal of Neuroscience.

[29]  N. Solenski,et al.  Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia , 2006, Journal of neurochemistry.

[30]  M. Cookson,et al.  Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. , 2009, Biochemistry.

[31]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[32]  C. Shaw,et al.  Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. , 2007, Human molecular genetics.

[33]  N. Wood,et al.  Mitochondrial function and morphology are impaired in parkin‐mutant fibroblasts , 2008, Annals of neurology.

[34]  S. Gross,et al.  Building Complexity: An In Vitro Study of Cytoplasmic Dynein with In Vivo Implications , 2005, Current Biology.

[35]  L. Goldstein,et al.  Axonal transport and Alzheimer's disease. , 2006, Annual review of biochemistry.

[36]  Daniel Irimia,et al.  Differential effect of three‐repeat and four‐repeat tau on mitochondrial axonal transport , 2009, Journal of neurochemistry.

[37]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[38]  P. Hollenbeck,et al.  The axonal transport of mitochondria , 2005, Journal of Cell Science.

[39]  Ian J. Reynolds,et al.  Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons , 2006, Neurobiology of Disease.

[40]  A. Ruusala,et al.  Atypical Rho GTPases Have Roles in Mitochondrial Homeostasis and Apoptosis* , 2003, The Journal of Biological Chemistry.

[41]  I. Reynolds,et al.  Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential , 2006, Journal of neurochemistry.

[42]  Qian Cai,et al.  Uncovering the role of Snapin in regulating autophagy-lysosomal function , 2011, Autophagy.

[43]  R. Youle,et al.  p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both , 2010, Autophagy.

[44]  Hansong Deng,et al.  The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[45]  J. Sweatt,et al.  Mitochondrial Regulation of Synaptic Plasticity in the Hippocampus* , 2003, The Journal of Biological Chemistry.

[46]  Michael P. Sheetz,et al.  Direct evidence for coherent low velocity axonal transport of mitochondria , 2006, The Journal of cell biology.

[47]  M. Rydmark,et al.  Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat , 1993, Journal of neurocytology.

[48]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[49]  A. Schapira,et al.  Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. , 2010, Human molecular genetics.

[50]  G. Hajnóczky,et al.  Control of mitochondrial motility and distribution by the calcium signal , 2004, The Journal of cell biology.

[51]  M. Welte,et al.  Bidirectional Transport along Microtubules , 2004, Current Biology.

[52]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[53]  K. Pozo,et al.  Mapping the GRIF-1 Binding Domain of the Kinesin, KIF5C, Substantiates a Role for GRIF-1 as an Adaptor Protein in the Anterograde Trafficking of Cargoes* , 2006, Journal of Biological Chemistry.

[54]  J. Caviston,et al.  Huntingtin as an essential integrator of intracellular vesicular trafficking. , 2009, Trends in cell biology.

[55]  A. Maturana,et al.  Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. , 2007, Biochemical and biophysical research communications.

[56]  I. Reynolds,et al.  Mitochondrial trafficking and morphology in healthy and injured neurons , 2006, Progress in Neurobiology.

[57]  Sergej L Mironov,et al.  ADP regulates movements of mitochondria in neurons. , 2007, Biophysical journal.

[58]  E. Holzbaur,et al.  A Direct Interaction between Cytoplasmic Dynein and Kinesin I May Coordinate Motor Activity* , 2004, Journal of Biological Chemistry.

[59]  Wolfgang Wurst,et al.  Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation* , 2009, The Journal of Biological Chemistry.

[60]  G. Kress,et al.  Glutamate Decreases Mitochondrial Size and Movement in Primary Forebrain Neurons , 2003, The Journal of Neuroscience.

[61]  N. Hirokawa,et al.  KIF5C, a novel neuronal kinesin enriched in motor neurons. , 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Yasunori Hayashi,et al.  The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses , 2004, Cell.

[63]  G. Bloom,et al.  Kinesin associates with anterogradely transported membranous organelles in vivo , 1991, The Journal of cell biology.

[64]  Ge Yang,et al.  Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. , 2007, Molecular biology of the cell.

[65]  Xinnan Wang,et al.  The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility , 2009, Cell.

[66]  P. Hollenbeck,et al.  Response of Mitochondrial Traffic to Axon Determination and Differential Branch Growth , 2003, The Journal of Neuroscience.

[67]  A. Ruusala,et al.  The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. , 2006, Biochemical and biophysical research communications.

[68]  Qian Cai,et al.  Mitochondrial Dynamics and Axonal Transport , 2011 .

[69]  F. Stephenson,et al.  GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons , 2009, Molecular and Cellular Neuroscience.

[70]  T. Shea,et al.  Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability. , 2008, Cell motility and the cytoskeleton.

[71]  Rebecca L. Frederick,et al.  Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway , 2004, The Journal of cell biology.

[72]  D. Edelman,et al.  Serotonin stimulates mitochondrial transport in hippocampal neurons , 2007, Molecular and Cellular Neuroscience.

[73]  E. Masliah,et al.  Axonopathy and Transport Deficits Early in the Pathogenesis of Alzheimer's Disease , 2005, Science.

[74]  G. Hajnóczky,et al.  Ca2+-dependent regulation of mitochondrial dynamics by the Miro-Milton complex. , 2009, The international journal of biochemistry & cell biology.

[75]  T. Langer,et al.  Quality control of mitochondria: protection against neurodegeneration and ageing , 2008, The EMBO journal.

[76]  I. Forsythe,et al.  Presynaptic Mitochondrial Calcium Sequestration Influences Transmission at Mammalian Central Synapses , 2002, The Journal of Neuroscience.

[77]  Yunfei Cai,et al.  Association of the Kinesin‐Binding Domain of RanBP2 to KIF5B and KIF5C Determines Mitochondria Localization and Function , 2007, Traffic.

[78]  K. Medler,et al.  Mitochondrial Ca(2+) buffering regulates synaptic transmission between retinal amacrine cells. , 2002, Journal of neurophysiology.

[79]  P. Hollenbeck,et al.  Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons , 1995, The Journal of cell biology.

[80]  G. Hajnóczky,et al.  Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase , 2008, Proceedings of the National Academy of Sciences.

[81]  D. Chan Mitochondria: Dynamic Organelles in Disease, Aging, and Development , 2006, Cell.

[82]  E. Mandelkow,et al.  MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons , 2004, The Journal of cell biology.

[83]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[84]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[85]  Michael P. Sheetz,et al.  Axonal mitochondrial transport and potential are correlated , 2004, Journal of Cell Science.

[86]  S. Humbert,et al.  Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons , 2008, The EMBO journal.

[87]  Jia Newcombe,et al.  Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Su Guo,et al.  The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. , 2011, Human molecular genetics.

[89]  A. Zorzano,et al.  Mitochondrial Dynamics and Its Implications in Metabolic Dysregulation and Neurodegeneration , 2012 .

[90]  D. Turnbull,et al.  Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse , 2006, Journal of neuroscience research.

[91]  J. McCaffery,et al.  Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum , 2007, Cell.

[92]  E. Schon,et al.  Mitochondria: The Next (Neurode)Generation , 2011, Neuron.

[93]  P. Greengard,et al.  WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines , 2008, Proceedings of the National Academy of Sciences.

[94]  D. Filliol,et al.  Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU. , 1993, Cell motility and the cytoskeleton.

[95]  Ram Dixit,et al.  Differential Regulation of Dynein and Kinesin Motor Proteins by Tau , 2008, Science.

[96]  N. Bogan,et al.  Light and electron microscopic analyses of intraspinal axon collaterals of sympathetic preganglionic neurons , 1991, Brain Research.

[97]  N. Hirokawa,et al.  Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo , 1990, The Journal of cell biology.

[98]  K. Zinsmaier,et al.  Drosophila Miro Is Required for Both Anterograde and Retrograde Axonal Mitochondrial Transport , 2009, The Journal of Neuroscience.

[99]  D. Attwell,et al.  Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization of Mitochondria at Synapses , 2009, Neuron.

[100]  P. Hollenbeck,et al.  Mitochondrial Membrane Potential in Axons Increases with Local Nerve Growth Factor or Semaphorin Signaling , 2008, The Journal of Neuroscience.

[101]  J. Julien,et al.  Alsin is partially associated with centrosome in human cells. , 2005, Biochimica et biophysica acta.

[102]  T. Schroer,et al.  Dynactin increases the processivity of the cytoplasmic dynein motor , 1999, Nature Cell Biology.

[103]  N. Hirokawa,et al.  Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method , 1982, The Journal of cell biology.

[104]  Yosuke Tanaka,et al.  Molecular Motors in Neurons: Transport Mechanisms and Roles in Brain Function, Development, and Disease , 2010, Neuron.

[105]  G. Shepherd,et al.  Three-Dimensional Structure and Composition of CA3→CA1 Axons in Rat Hippocampal Slices: Implications for Presynaptic Connectivity and Compartmentalization , 1998, The Journal of Neuroscience.

[106]  R. Lasek,et al.  Microtubules have special physical associations with smooth endoplasmic reticula and mitochondria in axons , 1991, Brain Research.

[107]  B. Foth,et al.  New insights into myosin evolution and classification. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[108]  N. Gross,et al.  Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. , 1969, The Journal of biological chemistry.

[109]  Jeff W Lichtman,et al.  Imaging axonal transport of mitochondria in vivo , 2007, Nature Methods.

[110]  L. Martins,et al.  Mitochondrial quality control and neurological disease: an emerging connection , 2010, Expert Reviews in Molecular Medicine.

[111]  A. MacAskill,et al.  Control of mitochondrial transport and localization in neurons. , 2010, Trends in cell biology.

[112]  D. Price,et al.  Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice , 2010, Proceedings of the National Academy of Sciences.

[113]  W. Saxton,et al.  Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. , 1999, Molecular biology of the cell.

[114]  D. Chan,et al.  Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. , 2008, Human molecular genetics.

[115]  S. Karki,et al.  Cytoplasmic dynein and dynactin in cell division and intracellular transport. , 1999, Current opinion in cell biology.

[116]  R. Menzies,et al.  The turnover of mitochondria in a variety of tissues of young adult and aged rats. , 1971, The Journal of biological chemistry.

[117]  K. Min,et al.  Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons , 2011, Proceedings of the National Academy of Sciences.

[118]  P. Hollenbeck,et al.  The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. , 1993, Journal of cell science.

[119]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[120]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[121]  Sonja Hess,et al.  Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy , 2011, Human molecular genetics.

[122]  F. Gillardon Leucine‐rich repeat kinase 2 phosphorylates brain tubulin‐beta isoforms and modulates microtubule stability – a point of convergence in Parkinsonian neurodegeneration? , 2009, Journal of neurochemistry.

[123]  P. Hollenbeck,et al.  Nerve Growth Factor Signaling Regulates Motility and Docking of Axonal Mitochondria , 2004, Current Biology.

[124]  Samuel Thayer,et al.  Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  Mandana Amiri,et al.  Mitochondrial biogenesis in the axons of vertebrate peripheral neurons , 2008, Developmental neurobiology.

[126]  C. Lively,et al.  Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. , 2006, Molecular biology of the cell.

[127]  B. Locke,et al.  The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. , 1996, Biochimica et biophysica acta.

[128]  Qian Cai,et al.  Moving or Stopping Mitochondria: Miro as a Traffic Cop by Sensing Calcium , 2009, Neuron.

[129]  Nobuhiko Ohno,et al.  Myelination and Axonal Electrical Activity Modulate the Distribution and Motility of Mitochondria at CNS Nodes of Ranvier , 2011, The Journal of Neuroscience.

[130]  D. Edelman,et al.  Dopamine Inhibits Mitochondrial Motility in Hippocampal Neurons , 2008, PloS one.

[131]  N. Hirokawa,et al.  Targeted Disruption of Mouse Conventional Kinesin Heavy Chain kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria , 1998, Cell.

[132]  He Li,et al.  N-Terminal Mutant Huntingtin Associates with Mitochondria and Impairs Mitochondrial Trafficking , 2008, The Journal of Neuroscience.

[133]  H. Kawamata,et al.  Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. , 2009, Human molecular genetics.

[134]  M. Vitek,et al.  Role of MAP1B in axonal retrograde transport of mitochondria. , 2006, The Biochemical journal.

[135]  K. Mihara,et al.  KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells , 2011, Journal of Cell Science.

[136]  Takafumi Inoue,et al.  Dynein- and activity-dependent retrograde transport of autophagosomes in neuronal axons , 2010, Autophagy.

[137]  E. Seeberg,et al.  Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro , 2004, Molecular and Cellular Biology.

[138]  A. Pestronk,et al.  Altered Axonal Mitochondrial Transport in the Pathogenesis of Charcot-Marie-Tooth Disease from Mitofusin 2 Mutations , 2007, The Journal of Neuroscience.

[139]  E. Barrett,et al.  Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+]. , 2003, Journal of neurophysiology.

[140]  B. Trapp,et al.  Demyelination Increases Axonal Stationary Mitochondrial Size and the Speed of Axonal Mitochondrial Transport , 2010, The Journal of Neuroscience.

[141]  Huan Ma,et al.  KIF5B Motor Adaptor Syntabulin Maintains Synaptic Transmission in Sympathetic Neurons , 2009, The Journal of Neuroscience.

[142]  J. Caviston,et al.  Huntingtin facilitates dynein/dynactin-mediated vesicle transport , 2007, Proceedings of the National Academy of Sciences.

[143]  Jongkyeong Chung,et al.  The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. , 2009, Biochemical and biophysical research communications.

[144]  H. Peng,et al.  The function of mitochondria in presynaptic development at the neuromuscular junction. , 2008, Molecular biology of the cell.

[145]  George Perry,et al.  The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease , 2009, Journal of neurochemistry.

[146]  N. Hilschmann,et al.  Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74. , 2002, The international journal of biochemistry & cell biology.

[147]  I. Meinertzhagen,et al.  Mitochondria are redistributed in Drosophila photoreceptors lacking Milton, a kinesin‐associated protein , 2003, The Journal of comparative neurology.

[148]  I. Reynolds,et al.  Mitochondrial Trafficking to Synapses in Cultured Primary Cortical Neurons , 2006, The Journal of Neuroscience.

[149]  Angela C. Poole,et al.  The Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway , 2010, PloS one.

[150]  P. Verstreken,et al.  Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions , 2005, Neuron.

[151]  F. Stephenson,et al.  Trafficking Kinesin Protein (TRAK)-mediated Transport of Mitochondria in Axons of Hippocampal Neurons* , 2011, The Journal of Biological Chemistry.

[152]  David W. Miller,et al.  Mitochondrial Alterations in PINK1 Deficient Cells Are Influenced by Calcineurin-Dependent Dephosphorylation of Dynamin-Related Protein 1 , 2009, PloS one.

[153]  A. Nairn,et al.  CaM kinase Iα–induced phosphorylation of Drp1 regulates mitochondrial morphology , 2008, The Journal of cell biology.

[154]  A. Maturana,et al.  Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. , 2007, Biochemical and biophysical research communications.

[155]  L. Chin,et al.  GRIF1 binds Hrs and is a new regulator of endosomal trafficking , 2006, Journal of Cell Science.

[156]  W. Saxton,et al.  APLIP1, a Kinesin Binding JIP-1/JNK Scaffold Protein, Influences the Axonal Transport of Both Vesicles and Mitochondria in Drosophila , 2005, Current Biology.

[157]  R. Weinberg,et al.  Interaction of the Postsynaptic Density-95/Guanylate Kinase Domain-Associated Protein Complex with a Light Chain of Myosin-V and Dynein , 2000, The Journal of Neuroscience.

[158]  D. Green,et al.  SnapShot: Mitochondrial Quality Control , 2011, Cell.

[159]  Qian Cai,et al.  Syntabulin-mediated anterograde transport of mitochondria along neuronal processes , 2005, The Journal of cell biology.

[160]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[161]  I. Meinertzhagen,et al.  Axonal Transport of Mitochondria to Synapses Depends on Milton, a Novel Drosophila Protein , 2002, Neuron.

[162]  S. Tabrizi,et al.  Correction: PINK1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons , 2008, PLoS ONE.

[163]  S. Sasaki,et al.  Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis , 1996, Neurology.

[164]  D. Kintner,et al.  Activity-Dependent Regulation of Mitochondrial Motility by Calcium and Na/K-ATPase at Nodes of Ranvier of Myelinated Nerves , 2010, The Journal of Neuroscience.

[165]  E. Mandelkow,et al.  Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress , 2002, The Journal of cell biology.

[166]  Thomas W von Geldern,et al.  Faculty Opinions recommendation of Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. , 2011 .

[167]  Sooyeon Lee,et al.  Lysosomal Proteolysis Inhibition Selectively Disrupts Axonal Transport of Degradative Organelles and Causes an Alzheimer's-Like Axonal Dystrophy , 2011, The Journal of Neuroscience.

[168]  Cuiling Li,et al.  Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation , 2008, Cell.

[169]  F. Stephenson,et al.  GRIF-1 and OIP106, Members of a Novel Gene Family of Coiled-Coil Domain Proteins , 2005, Journal of Biological Chemistry.

[170]  M. Beal,et al.  Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery , 2008, Proceedings of the National Academy of Sciences.

[171]  A. Reichert,et al.  Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin , 2007, The Journal of Neuroscience.

[172]  T. Schwarz,et al.  Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent , 2006, The Journal of cell biology.

[173]  D. Turnbull,et al.  Increase in mitochondrial density within axons and supporting cells in response to demyelination in the Plp1 mouse model , 2009, Journal of neuroscience research.

[174]  M. Charlton,et al.  The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses , 2005, Neuron.

[175]  Satoshi O. Suzuki,et al.  Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice , 2009, Nature Cell Biology.

[176]  Kai Zhang,et al.  Tau Reduction Prevents Aβ-Induced Defects in Axonal Transport , 2010, Science.

[177]  Z. Sheng,et al.  Dynein Light Chain LC8 Regulates Syntaphilin-Mediated Mitochondrial Docking in Axons , 2009, The Journal of Neuroscience.

[178]  J. Gal,et al.  Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport. , 2010, Biochimica et biophysica acta.

[179]  Z. Sheng,et al.  Increased Axonal Mitochondrial Mobility Does Not Slow Amyotrophic Lateral Sclerosis (ALS)-like Disease in Mutant SOD1 Mice* , 2011, The Journal of Biological Chemistry.

[180]  David S. Park,et al.  Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission* , 2009, Journal of Biological Chemistry.

[181]  A. Grishin,et al.  Identification of γ-Aminobutyric Acid Receptor-interacting Factor 1 (TRAK2) as a Trafficking Factor for the K+ Channel Kir2.1* , 2006, Journal of Biological Chemistry.