A unified framework for semi-supervised dimensionality reduction

[1]  Jieping Ye,et al.  Least squares linear discriminant analysis , 2007, ICML '07.

[2]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[3]  Xin Yang,et al.  Semi-supervised nonlinear dimensionality reduction , 2006, ICML.

[4]  Kohei Inoue,et al.  Dimensionality Reduction for Semi-supervised Face Recognition , 2005, FSKD.

[5]  Jing Peng,et al.  Discriminant Analysis: A Least Squares Approximation View , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[6]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Han Liu,et al.  An Efficient Method to Estimate Labelled Sample Size for Transductive LDA(QDA/MDA) Based on Bayes Risk , 2004, ECML.

[9]  Tao Jiang,et al.  Efficient and robust feature extraction by maximum margin criterion , 2003, IEEE Transactions on Neural Networks.

[10]  Stephen A. Billings,et al.  Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm , 2002, Neural Networks.

[11]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[12]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[14]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[15]  Gunnar Rätsch,et al.  Invariant Feature Extraction and Classification in Kernel Spaces , 1999, NIPS.

[16]  Volker Roth,et al.  Nonlinear Discriminant Analysis Using Kernel Functions , 1999, NIPS.

[17]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[18]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[19]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[20]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[21]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[23]  Daoqiang Zhang,et al.  Semi-Supervised Dimensionality Reduction ∗ , 2007 .

[24]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[25]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[26]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .