The fundamental limits of infinite constellations in MIMO fading channels

The fundamental and natural connection between the infinite constellation (IC) dimension and the best diversity order it can achieve is investigated in this paper. In the first part of this work we develop an upper bound on the diversity order of IC for any dimension and any number of transmit and receive antennas. In the second part of this work we prove that by choosing the correct dimensions, IC in general and lattices in particular can achieve the optimal diversity-multiplexing tradeoff of finite constellations. This work gives a framework for designing lattices for multiple-antenna channels using lattice decoding.

[1]  Frédérique E. Oggier,et al.  Perfect Space–Time Block Codes , 2006, IEEE Transactions on Information Theory.

[2]  P. Vijay Kumar,et al.  Explicit Space–Time Codes Achieving the Diversity–Multiplexing Gain Tradeoff , 2006, IEEE Transactions on Information Theory.

[3]  Meir Feder,et al.  Finite-Dimensional Infinite Constellations , 2011, IEEE Transactions on Information Theory.

[4]  Joakim Jaldén,et al.  DMT Optimality of LR-Aided Linear Decoders for a General Class of Channels, Lattice Designs, and System Models , 2009, IEEE Transactions on Information Theory.

[5]  Amir K. Khandani,et al.  On the Limitations of the Naive Lattice Decoding , 2010, IEEE Transactions on Information Theory.

[6]  Emanuele Viterbo,et al.  The golden code: a 2×2 full-rate space-time code with nonvanishing determinants , 2004, IEEE Trans. Inf. Theory.

[7]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[8]  Yi Jiang,et al.  The generalized triangular decomposition , 2007, Math. Comput..

[9]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[10]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[11]  Alexander Vardy,et al.  Universal Bound on the Performance of Lattice Codes , 1999, IEEE Trans. Inf. Theory.

[12]  Giuseppe Caire,et al.  Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels , 2004, IEEE Transactions on Information Theory.

[13]  Christopher Holden,et al.  Perfect Space-Time Block Codes , 2004 .

[14]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[15]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[16]  Pramod Viswanath,et al.  Approximately universal codes over slow-fading channels , 2005, IEEE Transactions on Information Theory.

[17]  Peter M. Gruber,et al.  Geometry of Numbers , 2011, Encyclopedia of Cryptography and Security.

[18]  Emanuele Viterbo,et al.  The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[19]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[20]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[21]  Ronen Dar,et al.  The Jacobi MIMO Channel , 2013, IEEE Transactions on Information Theory.

[22]  Gregory Poltyrev,et al.  On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.