Karyotype evolution of the Asterids insights from the first genome sequences of the family Cornaceae

Abstract Cornaceae is a core representative family in Cornales, the earliest branching lineage in the Asterids on the life tree of angiosperms. This family includes the only genus Cornus, a group of ~55 species. These species occur widely in Northern Hemisphere and have been used as resources for horticultural ornaments, medicinal and industrial manufacturing. However, no any genome sequences are available for this family. Here, we reported a chromosomelevel genome for Cornus controversa. This was generated using high-fidelity plus Hi–C sequencing, and totally ~771.80 Mb assembled sequences and 39,886 protein-coding genes were obtained. We provided evidence for a whole-genome duplication event (WGD) unique to C. controversa. The evolutionary features of this genome indicated that the expanded and unique genes might have contributed to response to stress, stimulus and defense. By using chromosome-level syntenic blocks shared between eight living genomes, we found high degrees of genomic diversification from the ancestral core-eudicot genome to the present-day genomes, suggesting an important role of WGD in genomic plasticity that leads to speciation and diversification. These results provide foundational insights on the evolutionary history of Cornaceae, as well as on the Asterids diversification.

[1]  Jianquan Liu,et al.  The genome sequence provides insights into salt tolerance of Achnatherum splendens (Gramineae), a constructive species of alkaline grassland , 2021, Plant biotechnology journal.

[2]  Jianquan Liu,et al.  A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis , 2021, Nature Communications.

[3]  Ting Li,et al.  WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes , 2021, bioRxiv.

[4]  Heng Li,et al.  Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm , 2021, Nature Methods.

[5]  X. Li,et al.  A chromosome‐level genome assembly for the tertiary relict plant Tetracentron sinense oliv. (trochodendraceae) , 2021, Molecular ecology resources.

[6]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[7]  Y. Isagi,et al.  Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, Cercidiphyllum japonicum. , 2020, The New phytologist.

[8]  Jianquan Liu,et al.  Genomic analyses of a “living fossil”: The endangered dove‐tree , 2020, Molecular ecology resources.

[9]  Jiang Hu,et al.  NextPolish: a fast and efficient genome polishing tool for long-read assembly , 2019, Bioinform..

[10]  Yuannian Jiao,et al.  Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. , 2020, Molecular plant.

[11]  Mark N. Puttick,et al.  MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees , 2019, Bioinform..

[12]  Srinivas Aluru,et al.  Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[13]  Mosè Manni,et al.  BUSCO: Assessing Genome Assembly and Annotation Completeness. , 2019, Methods in molecular biology.

[14]  J. Keilwagen,et al.  GeMoMa: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-seq Data. , 2019, Methods in molecular biology.

[15]  M. Lysak,et al.  Post-polyploid diploidization and diversification through dysploid changes. , 2018, Current opinion in plant biology.

[16]  Shujun Ou,et al.  LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons1[OPEN] , 2017, Plant Physiology.

[17]  Han Fang,et al.  GenomeScope: Fast reference-free genome profiling from short reads , 2016, bioRxiv.

[18]  Zhou Du,et al.  agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update , 2017, Nucleic Acids Res..

[19]  Xiao Zhang,et al.  Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species , 2017, BMC Genomics.

[20]  J. Salse,et al.  Wheat paleohistory created asymmetrical genomic evolution. , 2017, Current opinion in plant biology.

[21]  Christophe Klopp,et al.  Reconstructing the genome of the most recent common ancestor of flowering plants , 2017, Nature Genetics.

[22]  Neva C. Durand,et al.  De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds , 2016, Science.

[23]  J. Salse Ancestors of modern plant crops. , 2016, Current opinion in plant biology.

[24]  S. Jackson,et al.  Evolution of plant genome architecture , 2016, Genome Biology.

[25]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[26]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[27]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[28]  J. Armengaud,et al.  Data for comparative proteomics of ovaries from five non-model, crustacean amphipods☆ , 2015, Data in brief.

[29]  S. Prochnik,et al.  Identification and distribution of the NBS-LRR gene family in the Cassava genome , 2015, BMC Genomics.

[30]  S. Shiu,et al.  The causes and molecular consequences of polyploidy in flowering plants , 2014, Annals of the New York Academy of Sciences.

[31]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[32]  Sean R. Eddy,et al.  nhmmer: DNA homology search with profile HMMs , 2013, Bioinform..

[33]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[34]  Dannie Durand,et al.  Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees , 2012, Bioinform..

[35]  Yeting Zhang,et al.  A genome triplication associated with early diversification of the core eudicots , 2012, Genome Biology.

[36]  Q. Xiang,et al.  Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s. l., Cornaceae). , 2011, The New phytologist.

[37]  R. Durbin,et al.  Inference of human population history from individual whole-genome sequences. , 2011, Nature.

[38]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[39]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[40]  Dai Chun-chu Research on Major Medical Component in Different Parts of Bothrocaryum controversum , 2009 .

[41]  Roel van Driel,et al.  Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C) , 2009, Nature Protocols.

[42]  Andrew H. Paterson,et al.  Synteny and Collinearity in Plant Genomes , 2008, Science.

[43]  R. Eyde ComprehendingCornus: Puzzles and progress in the systematics of the dogwoods , 1988, The Botanical Review.

[44]  David,et al.  Tracking character evolution and biogeographic history through time in Cornaceae—Does choice of methods matter? , 2008 .

[45]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[46]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[47]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[48]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[49]  Nello Cristianini,et al.  CAFE: a computational tool for the study of gene family evolution , 2006, Bioinform..

[50]  David T. Thomas,et al.  Species level phylogeny of the genus Cornus (Cornaceae) based on molecular and morphological evidence-implications for taxonomy and Tertiary intercontinental migration , 2006 .

[51]  Amy E. Keating,et al.  Paircoil2: improved prediction of coiled coils from sequence , 2006, Bioinform..

[52]  Gene A. Brewer,et al.  Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  C. Fan,et al.  PHYLOGENY, BIOGEOGRAPHY, AND MOLECULAR DATING OF CORNELIAN CHERRIES (CORNUS, CORNACEAE): TRACKING TERTIARY PLANT MIGRATION , 2005, Evolution; international journal of organic evolution.

[54]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[55]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[56]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[57]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[58]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[59]  Li Ru-juan,et al.  Karyotypes of five species of Cornus (s.l.) (Cornaceae) from China , 2002 .

[60]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[61]  C. Fan Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences. , 2001, American journal of botany.

[62]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[63]  D. Soltis,et al.  Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. , 1998, American journal of botany.

[64]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[65]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..

[66]  J. S. Heslop-Harrison,et al.  Nuclear dna amounts in angiosperms. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[67]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[68]  Xiang Shu,et al.  The Flora of China , 1889, Nature.

[69]  Yasuko Takahashi,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2022 .