Dynamic DNA nanotechnology: toward functional nanoscale devices

Dynamic DNA nanotechnology involves the creation of nanoscale devices made of DNA whose primary function arises from their ability to undergo controlled motion or reconfiguration. In the past two decades, dynamic DNA nanotechnology has evolved to the point where it is now being employed in devices intended for applications in sensing, drug delivery, computation, nanorobotics, and more. In this review article, we discuss the design of dynamic DNA nanodevices and the characterization and prediction of device behavior. We also identify a number of continuing challenges in dynamic DNA nanotechnology and discuss potential solutions to those challenges.

[1]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[2]  Mette D. E. Jepsen,et al.  Construction of a 4 zeptoliters switchable 3D DNA box origami. , 2012, ACS nano.

[3]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[4]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[5]  Minh-Kha Nguyen,et al.  A DNA Origami-Based Chiral Plasmonic Sensing Device. , 2018, ACS applied materials & interfaces.

[6]  Joseph M. Schaeffer,et al.  On the biophysics and kinetics of toehold-mediated DNA strand displacement , 2013, Nucleic acids research.

[7]  Jonathan Bath,et al.  "Giant surfactants" created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer. , 2013, ACS nano.

[8]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[9]  Hendrik Dietz,et al.  Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch. , 2018, Nano letters.

[10]  Xingguo Liang,et al.  Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription , 2007, Nature Protocols.

[11]  Jonathan Bath,et al.  Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering. , 2018, ACS nano.

[12]  Xingguo Liang,et al.  A supra-photoswitch involving sandwiched DNA base pairs and azobenzenes for light-driven nanostructures and nanodevices. , 2009, Small.

[13]  Yi Cui,et al.  Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. , 2014, Journal of the American Chemical Society.

[14]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[15]  Wei Li,et al.  A cargo-sorting DNA robot , 2017, Science.

[16]  Friedrich C Simmel,et al.  Long-range movement of large mechanically interlocked DNA nanostructures , 2016, Nature Communications.

[17]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[18]  T. LaBean,et al.  pH-Driven Actuation of DNA Origami via Parallel I-Motif Sequences in Solution and on Surfaces. , 2017, Bioconjugate chemistry.

[19]  Carlos E Castro,et al.  Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers , 2018, Nature Communications.

[20]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[21]  Victoria Birkedal,et al.  Multifluorophore DNA Origami Beacon as a Biosensing Platform. , 2018, ACS nano.

[22]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[23]  J. Rossi,et al.  Aptamers as targeted therapeutics: current potential and challenges , 2016, Nature Reviews Drug Discovery.

[24]  Jejoong Yoo,et al.  De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation , 2016, Nucleic acids research.

[25]  Nicholas Stephanopoulos,et al.  Rapid Photoactuation of a DNA Nanostructure using an Internal Photocaged Trigger Strand. , 2018, Angewandte Chemie.

[26]  H. Su,et al.  DNA origami compliant nanostructures with tunable mechanical properties. , 2014, ACS nano.

[27]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[28]  Flavio Romano,et al.  Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model. , 2017, ACS nano.

[29]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[30]  Yusuke Sakai,et al.  DNA Aptamers for the Functionalisation of DNA Origami Nanostructures , 2018, Genes.

[31]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[32]  Tayyab Husnain,et al.  RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis , 2012, Bioinformation.

[33]  Xiaogang Han,et al.  Catch and release: DNA tweezers that can capture, hold, and release an object under control. , 2008, Journal of the American Chemical Society.

[34]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[35]  S. Balasubramanian,et al.  A proton-fuelled DNA nanomachine. , 2003, Angewandte Chemie.

[36]  Na Li,et al.  Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction. , 2012, Analytical chemistry.

[37]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[38]  Hai-Jun Su,et al.  Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis. , 2019, Nanoscale.

[39]  T. G. Martin,et al.  Cryo-EM structure of a 3D DNA-origami object , 2012, Proceedings of the National Academy of Sciences.

[40]  Travis A. Meyer,et al.  Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator , 2016, Nature Communications.

[41]  Haimei Zheng,et al.  Liquid Cell Transmission Electron Microscopy. , 2016, Annual review of physical chemistry.

[42]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[43]  Jiashu Sun,et al.  Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami. , 2017, Nano letters.

[44]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[45]  S. Balasubramanian,et al.  A reversible pH-driven DNA nanoswitch array. , 2006, Journal of the American Chemical Society.

[46]  Flavio Romano,et al.  Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. , 2015, The Journal of chemical physics.

[47]  Jejoong Yoo,et al.  In situ structure and dynamics of DNA origami determined through molecular dynamics simulations , 2013, Proceedings of the National Academy of Sciences.

[48]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[49]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[50]  Timon Funck,et al.  Sensing Picomolar Concentrations of RNA Using Switchable Plasmonic Chirality. , 2018, Angewandte Chemie.

[51]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[52]  Hendrik Dietz,et al.  Nanoscale rotary apparatus formed from tight-fitting 3D DNA components , 2016, Science Advances.

[53]  Carlos E Castro,et al.  Dynamic DNA Origami Device for Measuring Compressive Depletion Forces. , 2017, ACS nano.

[54]  I. Tinoco,et al.  Estimation of Secondary Structure in Ribonucleic Acids , 1971, Nature.

[55]  Jonathan P. K. Doye,et al.  Direct Simulation of the Self-Assembly of a Small DNA Origami. , 2016, ACS nano.

[56]  Jing Pan,et al.  Recent progress on DNA based walkers. , 2015, Current opinion in biotechnology.

[57]  Masayuki Endo,et al.  Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. , 2010, Journal of the American Chemical Society.

[58]  Weihong Tan,et al.  Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. , 2015, Nano letters.

[59]  J. Doye,et al.  Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. , 2010, The Journal of chemical physics.

[60]  Tamar Schlick,et al.  A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments. , 2009, The journal of physical chemistry. A.

[61]  Itamar Willner,et al.  pH-programmable DNAzyme nanostructures. , 2011, Chemical communications.

[62]  Jejoong Yoo,et al.  Molecular mechanics of DNA bricks: in situ structure, mechanical properties and ionic conductivity , 2016 .

[63]  J. Doye,et al.  Sequence-dependent thermodynamics of a coarse-grained DNA model. , 2012, The Journal of chemical physics.

[64]  Jinyi Dong,et al.  Modular Assembly of Plasmonic Nanoparticles Assisted by DNA Origami. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[65]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[66]  D. Lilley,et al.  Structures of helical junctions in nucleic acids , 2000, Quarterly Reviews of Biophysics.

[67]  Friedrich C. Simmel,et al.  Design Variations for an Aptamer-Based DNA Nanodevice , 2005 .

[68]  Friedrich C Simmel,et al.  Hydrophobic actuation of a DNA origami bilayer structure. , 2014, Angewandte Chemie.

[69]  Günter Mayer,et al.  Aptamers as Valuable Molecular Tools in Neurosciences , 2017, The Journal of Neuroscience.

[70]  Elisa Franco,et al.  Autonomous dynamic control of DNA nanostructure self-assembly , 2019, Nature Chemistry.

[71]  Stefan Howorka,et al.  A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes. , 2019, ACS nano.

[72]  Lulu Qian,et al.  Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns , 2017, Nature.

[73]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[74]  Lili Shi,et al.  A DNA nanoswitch-controlled reversible nanosensor , 2016, Nucleic acids research.

[75]  Tao Zhang,et al.  Chiral plasmonic DNA nanostructures with switchable circular dichroism , 2013, Nature Communications.

[76]  Hendrik Dietz,et al.  The sequence of events during folding of a DNA origami , 2019, Science Advances.

[77]  Zhao Zhang,et al.  DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching. , 2016, Angewandte Chemie.

[78]  Jing Pan,et al.  Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation. , 2015, Journal of the American Chemical Society.

[79]  Dmitry V Klinov,et al.  A coarse-grained model for DNA origami , 2017, Nucleic acids research.

[80]  Bernard Yurke,et al.  Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents. , 2014, Nanoscale.

[81]  Na Liu,et al.  A plasmonic nanorod that walks on DNA origami , 2015, Nature Communications.

[82]  Ying Liu,et al.  A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing. , 2018, Biosensors & bioelectronics.

[83]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[84]  Yi Du,et al.  Programmable i-motif DNA folding topology for a pH-switched reversible molecular sensing device , 2017, Nucleic acids research.

[85]  Helgi I. Ingólfsson,et al.  Martini Coarse-Grained Force Field: Extension to RNA. , 2015, Biophysical journal.

[86]  Friedrich C Simmel,et al.  A self-assembled nanoscale robotic arm controlled by electric fields , 2018, Science.

[87]  Francesco Ricci,et al.  Programmable pH-triggered DNA nanoswitches. , 2014, Journal of the American Chemical Society.

[88]  Michael Famulok,et al.  I-motif-programmed functionalization of DNA nanocircles. , 2013, Journal of the American Chemical Society.

[89]  Guixue Wang,et al.  The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory , 2013 .

[90]  Tim Liedl,et al.  Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering. , 2018, Nano letters.

[91]  Chunhai Fan,et al.  Molecular threading and tunable molecular recognition on DNA origami nanostructures. , 2013, Journal of the American Chemical Society.

[92]  M. Waterman,et al.  RNA secondary structure: a complete mathematical analysis , 1978 .

[93]  Flavio Romano,et al.  Coarse-grained modelling of the structural properties of DNA origami , 2018, Nucleic acids research.

[94]  Erik Winfree,et al.  Diverse and robust molecular algorithms using reprogrammable DNA self-assembly , 2019, Nature.

[95]  Baoquan Ding,et al.  A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo , 2018, Nature Biotechnology.

[96]  Preston B. Landon,et al.  Highly specific SNP detection using 2D graphene electronics and DNA strand displacement , 2016, Proceedings of the National Academy of Sciences.

[97]  Xue Han,et al.  Light sensitization of DNA nanostructures via incorporation of photo-cleavable spacers. , 2015, Chemical communications.

[98]  Na Liu,et al.  A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function , 2016, Nature Communications.

[99]  Michel Dumontier,et al.  Aptamer base: a collaborative knowledge base to describe aptamers and SELEX experiments , 2012, Database J. Biol. Databases Curation.

[100]  Chengde Mao,et al.  A DNA nanomachine based on a duplex-triplex transition. , 2004, Angewandte Chemie.

[101]  Yang Yang,et al.  A pH-driven, reconfigurable DNA nanotriangle. , 2009, Chemical communications.

[102]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[103]  Jie Song,et al.  Reconfiguration of DNA molecular arrays driven by information relay , 2017, Science.

[104]  Carlos E. Castro,et al.  Directing folding pathways for multi-component DNA origami nanostructures with complex topology , 2016 .

[105]  Hendrik Dietz,et al.  Gigadalton-scale shape-programmable DNA assemblies , 2017, Nature.

[106]  Ali Abbas,et al.  Switchable DNA-origami nanostructures that respond to their environment and their applications , 2018, Biophysical Reviews.

[107]  Denis S. Grebenkov,et al.  Imperfect Diffusion-Controlled Reactions , 2019, Chemical Kinetics.

[108]  Adam F. Chrimes,et al.  Degenerately Hydrogen Doped Molybdenum Oxide Nanodisks for Ultrasensitive Plasmonic Biosensing , 2018 .

[109]  Na Liu,et al.  Gold nanocrystal-mediated sliding of doublet DNA origami filaments , 2018, Nature Communications.

[110]  Jenny V Le,et al.  Probing Nucleosome Stability with a DNA Origami Nanocaliper. , 2016, ACS nano.

[111]  Prakash Shrestha,et al.  Single-molecule mechanochemical sensing using DNA origami nanostructures. , 2014, Angewandte Chemie.

[112]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[113]  Hai-Jun Su,et al.  Cation-Activated Avidity for Rapid Reconfiguration of DNA Nanodevices. , 2018, ACS nano.

[114]  Dongsheng Liu,et al.  Light-driven conformational switch of i-motif DNA. , 2007, Angewandte Chemie.

[115]  Jejoong Yoo,et al.  Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field. , 2015, ACS nano.

[116]  Hai-Jun Su,et al.  Paper Origami-Inspired Design and Actuation of DNA Nanomachines with Complex Motions. , 2018, Small.

[117]  Na Liu,et al.  DNA-Assembled Multilayer Sliding Nanosystems , 2019, Nano letters.

[118]  H. Dietz,et al.  Uncovering the forces between nucleosomes using DNA origami , 2016, Science Advances.

[119]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[120]  R. Gargallo,et al.  Fundamental aspects of the nucleic acid i-motif structures , 2014 .

[121]  David H. Mathews,et al.  RNAstructure: software for RNA secondary structure prediction and analysis , 2010, BMC Bioinformatics.

[122]  M. Komiyama,et al.  Photocontrol of DNA Duplex Formation by Using Azobenzene‐Bearing Oligonucleotides , 2001, Chembiochem : a European journal of chemical biology.

[123]  Na Liu,et al.  Dynamic Plasmonic System That Responds to Thermal and Aptamer-Target Regulations. , 2018, Nano letters.

[124]  Carlos E. Castro,et al.  Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations. , 2017, ACS nano.

[125]  Tamar Schlick,et al.  Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model , 2006, Proceedings of the National Academy of Sciences.

[126]  Zvi Kam,et al.  Dependence of DNA conformation on the concentration of salt. , 1981, Biopolymers.

[127]  Tamar Schlick,et al.  Flexible histone tails in a new mesoscopic oligonucleosome model. , 2006, Biophysical journal.

[128]  N. Seeman DNA in a material world , 2003, Nature.

[129]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[130]  John H. Reif,et al.  The design of autonomous DNA nano-mechanical devices: Walking and rolling DNA , 2003, Natural Computing.

[131]  Jens Bauer,et al.  "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout. , 2017, Nano letters.

[132]  Tim Liedl,et al.  DNA-Assembled Advanced Plasmonic Architectures. , 2018, Chemical reviews.

[133]  Qingkun Liu,et al.  Colloidal plasmonic DNA-origami with photo-switchable chirality in liquid crystals , 2019, Optics Letters.

[134]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[135]  G. Seelig,et al.  DNA as a universal substrate for chemical kinetics , 2010, Proceedings of the National Academy of Sciences.

[136]  Jeremy J. Baumberg,et al.  Thermo‐Responsive Actuation of a DNA Origami Flexor , 2018 .

[137]  Lei Zhang,et al.  Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography , 2016, Nature Communications.

[138]  Adrian Keller,et al.  Dynamics of DNA Origami Lattice Formation at Solid-Liquid Interfaces. , 2018, ACS applied materials & interfaces.

[139]  T. Krupenkin,et al.  Reverse electrowetting as a new approach to high-power energy harvesting , 2011, Nature communications.

[140]  Hendrik Dietz,et al.  Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering. , 2016, Nano letters.

[141]  Hai-Jun Su,et al.  Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography , 2018, Nature Communications.

[142]  Na Liu,et al.  Selective control of reconfigurable chiral plasmonic metamolecules , 2017, Science Advances.

[143]  N. Seeman,et al.  Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate , 2006, Science.

[144]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[145]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[146]  F. Simmel,et al.  Principles and Applications of Nucleic Acid Strand Displacement Reactions. , 2019, Chemical reviews.

[147]  Hai-Jun Su,et al.  Direct design of an energy landscape with bistable DNA origami mechanisms. , 2015, Nano letters.

[148]  Veikko Linko,et al.  Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo , 2019, ACS nano.

[149]  Jianbin Tang,et al.  A Tumor‐Specific Cascade Amplification Drug Release Nanoparticle for Overcoming Multidrug Resistance in Cancers , 2017, Advanced materials.

[150]  Yangyang Yang,et al.  Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. , 2012, Journal of the American Chemical Society.

[151]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[152]  Flavio Romano,et al.  Modelling toehold-mediated RNA strand displacement. , 2014, Biophysical journal.

[153]  M. Zuker,et al.  Prediction of hybridization and melting for double-stranded nucleic acids. , 2004, Biophysical journal.

[154]  Xiaogang Qu,et al.  Logic gates and pH sensing devices based on a supramolecular telomere DNA/conjugated polymer system. , 2010, Molecular bioSystems.

[155]  Kevin W. Plaxco,et al.  A DNA Nanodevice That Loads and Releases a Cargo with Hemoglobin-Like Allosteric Control and Cooperativity. , 2017, Nano letters.

[156]  Carlos E. Castro,et al.  Pseudorigid-Body Models of Compliant DNA Origami Mechanisms , 2015 .

[157]  Lei Zhang,et al.  3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography , 2015, Scientific Reports.

[158]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[159]  A. Ellington,et al.  Aptamer beacons for the direct detection of proteins. , 2001, Analytical biochemistry.

[160]  G. K. Rollefson,et al.  Quenching of fluorescence in solution. , 1948, The Journal of physical and colloid chemistry.

[161]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[162]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[163]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[164]  Michael Mertig,et al.  Electrical Actuation of a DNA Origami Nanolever on an Electrode. , 2017, Journal of the American Chemical Society.

[165]  Ralf Jungmann,et al.  DNA Origami Route for Nanophotonics , 2018, ACS photonics.

[166]  Tamar Schlick,et al.  Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions , 2009, Proceedings of the National Academy of Sciences.

[167]  N. Seeman,et al.  Antiparallel DNA Double Crossover Molecules As Components for Nanoconstruction , 1996 .

[168]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[169]  Casey Grun,et al.  Programmable self-assembly of three-dimensional nanostructures from 104 unique components , 2017, Nature.

[170]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[171]  Michael D. Stone,et al.  Structural transitions and elasticity from torque measurements on DNA , 2003, Nature.

[172]  Uwe C. Täuber,et al.  Fluctuations and Correlations in Chemical Reaction Kinetics and Population Dynamics , 2018, Chemical Kinetics.

[173]  Joseph E Italiano,et al.  The biogenesis of platelets from megakaryocyte proplatelets. , 2005, The Journal of clinical investigation.

[174]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.