Solving the Pell equation
暂无分享,去创建一个
[1] Loo-Keng Hua. On the least solution of Pell's equation , 1942 .
[2] Arnold Schönhage,et al. Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.
[3] Ulrich Vollmer,et al. Asymptotically Fast Discrete Logarithms in Quadratic Number Fields , 2000, ANTS.
[4] Sean Hallgren,et al. Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem , 2002, STOC '02.
[5] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[6] Lionnet. Solution d'un problème d'arithmétique , 1843 .
[7] Richard P. Brent,et al. Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.
[8] H. Lenstra. On the calculation of regulators and class numbers of quadratic fields , 1982 .
[9] Ulrich Vollmer,et al. Rigorously analyzed algorithms for the discrete logarithm problem in quadratic number fields , 2004 .
[10] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[11] W. B.. History of the Theory of Numbers , Nature.
[12] L. Dickson. History of the Theory of Numbers , 1924, Nature.
[13] Guoqiang Ge. Recognizing units in number fields , 1994 .
[14] L. Euler. Vollständige Anleitung zur Algebra , 1802 .
[15] Archimedes,et al. Archimedis opera omnia cum commentariis Eutocii , 1910 .
[16] H. C. Williams,et al. Short Representation of Quadratic Integers , 1995 .
[17] Bayly Turlington,et al. Zur griechischen Anthologie , 1967 .
[18] I. Vardi. Archimedes' Cattle Problem , 1998 .
[19] Ulrich Vollmer,et al. An Accelerated Buchmann Algorithm for Regulator Computation in Real Quadratic Fields , 2002, ANTS.
[20] Jeremy Gray,et al. Number theory: An approach through history; from Hammurapi to Legendre , 1986 .