Deterministic sparse FFT for M-sparse vectors
暂无分享,去创建一个
[1] Adi Akavia,et al. Deterministic Sparse Fourier Approximation Via Approximating Arithmetic Progressions , 2014, IEEE Transactions on Information Theory.
[2] Toni Volkmer,et al. Efficient Spectral Estimation by MUSIC and ESPRIT with Application to Sparse FFT , 2016, Front. Appl. Math. Stat..
[3] Krishna R. Narayanan,et al. Sub-string/Pattern Matching in Sub-linear Time Using a Sparse Fourier Transform Approach , 2017, ArXiv.
[4] Sina Bittens,et al. Sparse FFT for Functions with Short Frequency Support , 2017 .
[5] Piotr Indyk,et al. Simple and practical algorithm for sparse Fourier transform , 2012, SODA.
[6] Amanda S. Newton,et al. Using Intervention Mapping to develop the Parents as Agents of Change (PAC©) intervention for managing pediatric obesity , 2016, BMC Research Notes.
[7] M. A. Iwen,et al. Improved sparse fourier approximation results: faster implementations and stronger guarantees , 2013, Numerical Algorithms.
[8] George Labahn,et al. Symbolic-numeric sparse interpolation of multivariate polynomials , 2006, ISSAC '06.
[9] Cédric J. Demeure. Fast QR factorization of Vandermonde matrices , 1989 .
[10] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[11] H. Montgomery,et al. Hilbert’s inequality , 1974 .
[12] Yang Wang,et al. Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..
[13] Piotr Indyk,et al. Faster GPS via the sparse fourier transform , 2012, Mobicom '12.
[14] Gerlind Plonka-Hoch,et al. A sparse fast Fourier algorithm for real non-negative vectors , 2016, J. Comput. Appl. Math..
[15] Gerlind Plonka-Hoch,et al. A deterministic sparse FFT algorithm for vectors with small support , 2015, Numerical Algorithms.
[16] Kannan Ramchandran,et al. Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.
[17] Mark Giesbrecht,et al. Diversification improves interpolation , 2011, ISSAC '11.
[18] Arie Feuer,et al. On perfect conditioning of Vandermonde matrices on the unit circle , 2007 .
[19] Piotr Indyk,et al. Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.
[20] Ankur Moitra,et al. Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.
[21] M. A. Iwen,et al. Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.