Deterministic sparse FFT for M-sparse vectors

In this paper, we derive a new deterministic sparse inverse fast Fourier transform (FFT) algorithm for the case that the resulting vector is sparse. The sparsity needs not to be known in advance but will be determined during the algorithm. If the vector to be reconstructed is M-sparse, then the complexity of the method is at most O(M2logN)$\mathcal {O} (M^{2} \log N)$ if M2 < N and falls back to the usual O(NlogN)$\mathcal {O}(N \log N) $ algorithm for M2 ≥ N. The method is based on the divide-and-conquer approach and may require the solution of a Vandermonde system of size at most M × M at each iteration step j if M2 < 2j. To ensure the stability of the Vandermonde system, we propose to employ a suitably chosen parameter σ that determines the knots of the Vandermonde matrix on the unit circle.

[1]  Adi Akavia,et al.  Deterministic Sparse Fourier Approximation Via Approximating Arithmetic Progressions , 2014, IEEE Transactions on Information Theory.

[2]  Toni Volkmer,et al.  Efficient Spectral Estimation by MUSIC and ESPRIT with Application to Sparse FFT , 2016, Front. Appl. Math. Stat..

[3]  Krishna R. Narayanan,et al.  Sub-string/Pattern Matching in Sub-linear Time Using a Sparse Fourier Transform Approach , 2017, ArXiv.

[4]  Sina Bittens,et al.  Sparse FFT for Functions with Short Frequency Support , 2017 .

[5]  Piotr Indyk,et al.  Simple and practical algorithm for sparse Fourier transform , 2012, SODA.

[6]  Amanda S. Newton,et al.  Using Intervention Mapping to develop the Parents as Agents of Change (PAC©) intervention for managing pediatric obesity , 2016, BMC Research Notes.

[7]  M. A. Iwen,et al.  Improved sparse fourier approximation results: faster implementations and stronger guarantees , 2013, Numerical Algorithms.

[8]  George Labahn,et al.  Symbolic-numeric sparse interpolation of multivariate polynomials , 2006, ISSAC '06.

[9]  Cédric J. Demeure Fast QR factorization of Vandermonde matrices , 1989 .

[10]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[11]  H. Montgomery,et al.  Hilbert’s inequality , 1974 .

[12]  Yang Wang,et al.  Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..

[13]  Piotr Indyk,et al.  Faster GPS via the sparse fourier transform , 2012, Mobicom '12.

[14]  Gerlind Plonka-Hoch,et al.  A sparse fast Fourier algorithm for real non-negative vectors , 2016, J. Comput. Appl. Math..

[15]  Gerlind Plonka-Hoch,et al.  A deterministic sparse FFT algorithm for vectors with small support , 2015, Numerical Algorithms.

[16]  Kannan Ramchandran,et al.  Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.

[17]  Mark Giesbrecht,et al.  Diversification improves interpolation , 2011, ISSAC '11.

[18]  Arie Feuer,et al.  On perfect conditioning of Vandermonde matrices on the unit circle , 2007 .

[19]  Piotr Indyk,et al.  Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.

[20]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[21]  M. A. Iwen,et al.  Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.