The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis

The history and methods of membrane protein crystallization are described. The solution of the structure of the photosynthetic reaction center from the bacterium Rhodopseudomonas viridis is described, and the structure of this membrane protein complex is correlated with its function as a light-driven electron pump across the photosynthetic membrane. Conclusions about the structure of the photosystem II reaction center from plants are drawn, and aspects of membrane protein structure are discussed.

[1]  A. Rutherford,et al.  Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Deisenhofer,et al.  Correlation of structural and spectroscopic properties of a photosynthetic reaction center , 1985 .

[3]  J. Hearst,et al.  Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata , 1984, Cell.

[4]  W. Baumeister,et al.  Electron microscopy at molecular dimensions : state of the art and strategies for the future , 1980 .

[5]  W. Bottomley,et al.  Structure of the spinach chloroplast genes for the D2 and 44 kd reaction-centre proteins of photosystem II and for tRNASer (UGA). , 1984, Nucleic acids research.

[6]  J. Deisenhofer,et al.  Analysis of optical spectra from single crystals of Rhodopseudomonas viridis reaction centers. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. Michel Crystallization of membrane proteins , 1983 .

[8]  Arana,et al.  Progress in Photosynthesis Research , 1987, Springer Netherlands.

[9]  J. Norris,et al.  Determination of the amount and the type of quinones present in single crystals from reaction center protein from the photosynthetic bacterium Rhodopseudomonas viridis , 1985 .

[10]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[11]  J. Hayter,et al.  Neutron scattering study of micelle structure in isotropic aqueous solutions of poly(oxyethylene) amphiphiles , 1985 .

[12]  G. Feher,et al.  Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. A. Uphaus,et al.  Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J Deisenhofer,et al.  X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.

[15]  Hans J. Bohnert,et al.  Nucleotide sequence of the gene for the Mr 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950 , 1982 .

[16]  J Deisenhofer,et al.  Experience with various techniques for the refinement of protein structures. , 1985, Methods in enzymology.

[17]  J. Deisenhofer,et al.  Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II , 1988 .

[18]  N. Pfennig Photosynthetic bacteria. , 1967, Annual review of microbiology.

[19]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[20]  R. Debus,et al.  Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Feher,et al.  Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. , 1986, Biochemistry.

[22]  G. Fleming,et al.  Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications , 1988, Nature.

[23]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[24]  H. Michel Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. , 1982, Journal of molecular biology.

[25]  Wolfgang Baumeister,et al.  Electron Microscopy at Molecular Dimensions , 1980, Proceedings in Life Sciences.

[26]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[27]  H. Michel,et al.  Cytochrome subunit of the photosynthetic reaction center from Rhodopseudomonas viridis is a lipoprotein , 1987 .

[28]  S. Inouye,et al.  Lipoprotein-28, a cytoplasmic membrane lipoprotein from Escherichia coli. Cloning, DNA sequence, and expression of its gene. , 1986, The Journal of biological chemistry.

[29]  V. Shuvalov,et al.  Electrogenic steps in the redox reactions catalyzed by photosynthetic reaction-centre complex from Rhodopseudomonas viridis. , 1988, European journal of biochemistry.

[30]  O. Nanba,et al.  Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Michael Levitt,et al.  Refinement of Large Structures by Simultaneous Minimization of Energy and R Factor , 1978 .

[32]  J. Jenkins,et al.  The growth and characterization of membrane protein crystals , 1986 .

[33]  Brian W. Matthews,et al.  An efficient general-purpose least-squares refinement program for macromolecular structures , 1987 .

[34]  G. Feher,et al.  Primary structure of the reaction center from Rhodopseudomonas sphaeroides , 1986, Proteins.

[35]  T. A. Jones,et al.  A graphics model building and refinement system for macromolecules , 1978 .

[36]  P. Overath,et al.  Bacteriorhodopsin depleted of purple membrane lipids. , 1976, Biochemical and biophysical research communications.

[37]  K. Steinback,et al.  Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Cytochrome Systems , 1987, Springer US.

[39]  Govindjee Energy conversion by plants and bacteria , 1982 .

[40]  V. Shuvalov,et al.  The primary photoreactions in the complex cytochrome-P-890-P-760 (bacteriopheophytin760) of Chromatium minutissimum at low redox potentials. , 1976, Biochimica et biophysica acta.

[41]  G. Feher,et al.  Primary photochemistry of iron-depleted and zinc-reconstituted reaction centers from Rhodopseudomonas sphaeroides. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Babcock,et al.  Electron-transfer events near the reaction center in oxygen-evolving photosystem II preparations , 1988 .

[43]  G. H. Reed,et al.  EPR properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum , 1976, FEBS letters.

[44]  U. W. Arndt,et al.  The Rotation method in crystallography : data collection from macromolecular crystals , 1977 .

[45]  B. Diner,et al.  Photoaffinity labeling of the azidoatrazine receptor site in reaction centers of Rhodopseudomonas sphaeroides , 1984 .

[46]  J. Breton,et al.  Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Clayton,et al.  Molar extinction coefficients and other properties of an improved reaction center preparation from Rhodopseudomonas viridis. , 1978, Biochimica et biophysica acta.

[48]  A. Verméglio,et al.  The photosynthetic bacterial reaction center : structure and dynamics , 1988 .

[49]  Govindjee,et al.  Introduction to Photosynthesis: Energy Conversion by Plants and Bacteria , 1982 .