Incorporation of dynamic behaviour in an automated process synthesis system

Abstract Incorporating non-economic criteria into an automated process synthesis procedure enables an engineer to prune, more easily and more effectively, the large design space early in the design process. Although existing synthesis procedures are based on the use of steady state modelling, issues such as operability and flexibility are best handled through the use of dynamic models. This paper describes a discrete programming approach, implemented in the Jacaranda synthesis tool, incorporating dynamic modelling for the generation of process designs, which meet specified criteria for operability or flexibility. Particular attention is given to implementation issues, including especially how to incorporate dynamic modelling efficiently in an automated environment. An example of the design of separation sequences with good start-up and feed disturbance behaviour is presented.

[1]  B. P. Kosyakov Radiation in electrodynamics and in Yang–Mills theory , 1992 .

[2]  R. Feynman Quantum mechanical computers , 1986 .

[3]  V. V. Nesterenko,et al.  Introduction to the Relativistic String Theory , 1990 .

[4]  H. K. Moffatt,et al.  The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.

[5]  Freeman J. Dyson,et al.  Feynman’s proof of the Maxwell equations , 1990 .

[6]  Gerald A. Goldin,et al.  Diffeomorphism groups, gauge groups, and quantum theory , 1983 .

[7]  Sergio A. Hojman,et al.  No Lagrangian? No quantization! , 1991 .

[8]  R. Newman,et al.  The global structure of simple space-times , 1989 .

[9]  Krzysztof Kowalski Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems , 1994 .

[10]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[11]  A. Messiah Quantum Mechanics , 1961 .

[12]  Gerald A. Goldin,et al.  Nonrelativistic current algebra in the N / V limit , 1974 .

[13]  Robert Weinstock,et al.  New Approach to Special Relativity , 1965 .

[14]  T Ratiu Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Ernest J. Henley,et al.  Equilibrium-Stage Separation Operations in Chemical Engineering , 1981 .

[16]  P. Dirac Principles of Quantum Mechanics , 1982 .

[17]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[18]  Gary J. Powers,et al.  Synthesis strategies for multicomponent separation systems with energy integration , 1974 .

[19]  A. Vasilʹev Space, time, motion , 1924 .

[20]  A. Logunov,et al.  The relativistic theory of gravity and Mach’s principle , 1998 .

[21]  Anatoliy Karolevych Prykarpatsky,et al.  Algebraic Integrability of Nonlinear Dy-namical Systems on Manifolds: Classical and Quantum Aspects , 1998 .

[22]  Eric S. Fraga,et al.  A case study on synthesis in preliminary design , 1997 .

[23]  Holm,et al.  Superfluid plasmas: Multivelocity nonlinear hydrodynamics of superfluid solutions with charged condensates coupled electromagnetically. , 1987, Physical review. A, General physics.

[24]  B. M. Barbashov On the Canonical Treatment of Lagrangian Constraints , 2001 .

[25]  S. Donaldson An application of gauge theory to four-dimensional topology , 1983 .

[26]  R. Jackiw,et al.  Dynamical Poincare Symmetry Realized by Field-dependent Diffeomorphisms , 1998 .

[27]  Shogo Tanimura Relativistic generalization and extension to the non-Abelian gauge theory of Feynman's proof of the Maxwell equations , 1992 .

[28]  B. A. Kupershmidt Infinite-dimensional analogs of the minimal coupling principle and of the Poincaré lemma for differential two-forms , 1992 .

[29]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[30]  John Douglas Moore,et al.  Lectures on Seiberg-Witten invariants , 1996 .

[31]  Fritz Rohrlich Classical charged particles , 1965 .

[32]  Shlomo Sternberg,et al.  Equations of motion of a classical particle in a Yang-Mills field and the principle of general covariance , 1978 .

[33]  Arvind Narayan Vaidya,et al.  Can Galilean mechanics and full Maxwell equations coexist peacefully , 1991 .

[34]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[35]  Ignacio E. Grossmann,et al.  Mathematical programming approaches to the synthesis of chemical process systems , 1999 .

[36]  C. R. Lee The Feynman-Dyson proof of the gauge field equations , 1990 .

[37]  Y. Berezansky,et al.  A generalization of white noise analysis by means of theory of hypergroups , 1996 .

[38]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[39]  A. A. Logunov The theory of gravity , 2001 .

[40]  Gerald A. Goldin,et al.  Nonrelativistic Current Algebras as Unitary Representations of Groups , 1971 .

[41]  W. Pauli,et al.  Theory Of Relativity , 1959 .

[42]  Tetsuo Goto,et al.  Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model , 1971 .

[43]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[44]  Z. Silagadze Feynman's derivation of Maxwell equations and extra dimensions , 2001, hep-ph/0106235.

[45]  Eric S. Fraga,et al.  The Generation and Use of Partial Solutions in Process Synthesis , 1998 .

[46]  A. Logunov,et al.  Relativistic theory of gravitation , 1985 .

[47]  Sidney D. Drell,et al.  Relativistic Quantum Fields , 1965 .

[48]  Eric S. Fraga,et al.  Multicriteria process synthesis for generating sustainable and economic bioprocesses , 1999 .

[49]  B. M. Bolotovskii,et al.  METHODOLOGICAL NOTES: Radiation from and energy loss by charged particles in moving media , 1992 .

[50]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[51]  A. Jaffe,et al.  “Theoretical mathematics”: toward a cultural synthesis of mathematics and theoretical physics , 1993, math/9307227.

[52]  J. Wheeler,et al.  Interaction with the Absorber as the Mechanism of Radiation , 1945 .

[53]  Freeman J. Dyson Feynman at Cornell , 1989 .

[54]  Gerald A. Goldin,et al.  Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect , 1981 .

[55]  C. Godbillon Géométrie différentielle et mécanique analytique , 1969 .

[56]  Walter Thirring,et al.  Classical Mathematical Physics , 1997 .

[57]  Richard J. Hughes,et al.  On Feynman’s proof of the Maxwell equations , 1992 .

[58]  N. David Mermin Relativity without light , 1984 .