A Software-Defined GPS and Galileo Receiver

[1]  G. Hein,et al.  A Candidate for the Galileo L1 OS Optimized Signal , 2005 .

[2]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[3]  Vincent Heiries,et al.  BOC(x,y) Signal Acquisition Techniques and Performances , 2003 .

[4]  Dennis M. Akos,et al.  Automatic gain control (AGC) as an interference assessment tool , 2003 .

[5]  Kai Borre The GPS Easy Suite–Matlab code for the GPS newcomer , 2003 .

[6]  Roland E. Best Phase-locked loops : design, simulation, and applications , 2003 .

[7]  Dennis M. Akos,et al.  GIDL : Generalized interference detection and localization system , 2002 .

[8]  James B. Y. Tsui,et al.  Direct bandpass sampling of multiple distinct RF signals , 1999, IEEE Trans. Commun..

[9]  Dennis M. Akos,et al.  A software radio approach to global navigation satellite system receiver design , 1997 .

[10]  G. Strang,et al.  Linear Algebra, Geodesy, and GPS , 1997 .

[11]  Elliott D. Kaplan Understanding GPS : principles and applications , 1996 .

[12]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[13]  Rajeev Jain,et al.  Performance Analysis of an All-Digital BPSK Direct-Sequence Spread-Spectrum IF Receiver Architecture , 1993, IEEE J. Sel. Areas Commun..

[14]  K. Shanmugan,et al.  Random Signals: Detection, Estimation and Data Analysis , 1988 .

[15]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[16]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[17]  Simon Haykin,et al.  Communication Systems , 1978 .

[18]  R. Gold,et al.  Optimal binary sequences for spread spectrum multiplexing (Corresp.) , 1967, IEEE Trans. Inf. Theory.