From Mandelbrot-like sets to Arnold tongues

A transition from Mandelbrot-like sets to Arnold tongues is characterized via a coupling of two non-identical quadratic maps proposed by us. A two-dimensional parameter-space considering the parameters of the individual quadratic maps was used to demonstrate numerically the event. The location of the parameter sets where Naimark-Sacker bifurcations occur, which is exactly the place where Arnold tongues of arbitrary periods are born, was computed analytically.

[1]  Eduardo L. Brugnago,et al.  Chaos Suppression in a Sine Square Map through Nonlinear Coupling , 2011 .

[2]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[3]  Generation of quasiperiodic oscillations in pairs of coupled maps , 2007 .

[4]  R. D. Pinto,et al.  Heteroclinic behavior in a dripping faucet experiment , 2002 .

[5]  H. Schuster Deterministic chaos: An introduction , 1984 .

[6]  Hui Zhang,et al.  Fractal structures in a generalized square map with exponential terms , 2012 .

[7]  Naimark–Sacker bifurcations in linearly coupled quadratic maps , 2004, nlin/0408010.

[8]  Edson D. Leonel,et al.  Parameter space for a dissipative Fermi–Ulam model , 2011 .

[9]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[10]  P. Rech Chaos control in a discrete time system through asymmetric coupling , 2008 .

[11]  A Celestino,et al.  Ratchet transport and periodic structures in parameter space. , 2011, Physical review letters.

[12]  Numerical Study of a Three-Dimensional Hénon Map , 2011 .

[13]  Iberê L. Caldas,et al.  Self-similarities of periodic structures for a discrete model of a two-gene system , 2012 .

[14]  Edward N. Lorenz,et al.  Compound windows of the Hénon-map , 2008 .

[15]  Jason A. C. Gallas,et al.  Mandelbrot-like sets in dynamical systems with no critical points , 2006 .

[16]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[17]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[18]  O. Isaeva,et al.  Mandelbrot set in coupled logistic maps and in an electronic experiment. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Gabriela A. Casas,et al.  Dynamics of Asymmetric Couplings of Two HéNon Maps , 2010, Int. J. Bifurc. Chaos.

[20]  P. Rech The dynamics of a symmetric coupling of three modified quadratic maps , 2013 .