Optimal sensor placement for joint parameter and state estimation problems in large-scale dynamical systems with applications to thermo-mechanics
暂无分享,去创建一个
[1] Maciej Patan,et al. D-optimal design of a monitoring network for parameter estimation of distributed systems , 2007, J. Glob. Optim..
[2] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[3] YangQuan Chen,et al. Optimal Observation for Cyber-physical Systems , 2009 .
[4] Kenneth Lange,et al. Numerical analysis for statisticians , 1999 .
[5] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[6] I. YU. GEJADZE,et al. On Computation of the Design Function Gradient for the Sensor-Location Problem in Variational Data Assimilation , 2012, SIAM J. Sci. Comput..
[7] L. Pronzato,et al. Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties , 2013 .
[8] J. Magnus,et al. Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .
[9] K. Deimling. Nonlinear functional analysis , 1985 .
[10] E. Haber,et al. Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems , 2010 .
[11] I. Yu. Gejadze,et al. Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics , 2011, J. Comput. Phys..
[12] Ben G. Fitzpatrick,et al. Bayesian analysis in inverse problems , 1991 .
[13] Yaming Yu. Monotonic convergence of a general algorithm for computing optimal designs , 2009, 0905.2646.
[14] A. El Jai,et al. Sensors and controls in the analysis of distributed systems , 1988 .
[15] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[16] Georg Stadler,et al. A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ0-Sparsification , 2013, SIAM J. Sci. Comput..
[17] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..
[18] Naotake Noda,et al. Theory of Elasticity and Thermal Stresses , 2013 .
[19] Melina A. Freitag,et al. Synergy of inverse problems and data assimilation techniques , 2013 .
[20] F. Pukelsheim. Optimal Design of Experiments , 1993 .
[21] Roland Herzog,et al. Sequentially optimal sensor placement in thermoelastic models for real time applications , 2015 .
[22] Stephen P. Boyd,et al. Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.
[23] Ting-Hua Yi,et al. Optimal sensor placement for structural health monitoring based on multiple optimization strategies , 2011 .
[24] Alexander Y. Sun,et al. Model Calibration and Parameter Estimation: For Environmental and Water Resource Systems , 2015 .
[25] Luis Tenorio,et al. Experimental design in the context of Tikhonov regularized inverse problems , 2013 .
[26] William Prager,et al. Theory of Thermal Stresses , 1960 .
[27] Moritz Diehl,et al. An approximation technique for robust nonlinear optimization , 2006, Math. Program..
[28] Ting Kei Pong,et al. Methods for Optimal Experimental Designs ∗ , 2012 .
[29] Ionel Michael Navon,et al. Computational Methods for Data Evaluation and Assimilation , 2019 .
[30] Anthony C. Atkinson,et al. Optimum Experimental Designs, with SAS , 2007 .
[31] E. Rafajłowicz. Optimum choice of moving sensor trajectories for distributed-parameter system identification , 1986 .
[32] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[33] S. Silvey. Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .
[34] Julio R. Banga,et al. Optimal field reconstruction of distributed process systems from partial measurements , 2007 .
[35] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[36] A. Armaou,et al. Optimal actuator/sensor placement for linear parabolic PDEs using spatial H2 norm , 2006 .
[37] O. Ghattas,et al. On Bayesian A- and D-optimal experimental designs in infinite dimensions , 2014, 1408.6323.
[38] Luís N. Vicente. Bilevel Programming: Introduction, History and Overview , 2009, Encyclopedia of Optimization.
[39] Luis Tenorio,et al. Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems , 2012, Comput. Optim. Appl..
[40] E. Haber,et al. Numerical methods for experimental design of large-scale linear ill-posed inverse problems , 2008 .
[41] Georg Stadler,et al. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[42] E. Rafajłowicz. Design of experiments for eigenvalue identification in distributed-parameter systems , 1981 .
[43] Kelly Cohen,et al. A heuristic approach to effective sensor placement for modeling of a cylinder wake , 2006 .
[44] Tom Lahmer,et al. Optimal experimental design for nonlinear ill-posed problems applied to gravity dams , 2011 .
[45] Carlos S. Kubrusly,et al. Sensors and controllers location in distributed systems - A survey , 1985, Autom..
[46] H. Malebranche,et al. Simultaneous state and parameter estimation and location of sensors for distributed systems , 1988 .
[47] Julio R. Banga,et al. Optimal sensor location and reduced order observer design for distributed process systems , 2004, Comput. Chem. Eng..
[48] Antonio A. Alonso,et al. Optimal sensor placement for state reconstruction of distributed process systems , 2004 .
[49] S. Silvey,et al. An algorithm for optimal designs on a design space , 1978 .
[50] Johannes P. Schlöder,et al. A real-time algorithm for moving horizon state and parameter estimation , 2011, Comput. Chem. Eng..
[51] Dietmar Rempfer,et al. Optimized sensor placement for urban flow measurement , 2004 .
[52] Hans Bock,et al. Efficient moving horizon state and parameter estimation for SMB processes , 2009 .
[53] Valerii V. Fedorov,et al. Optimal Design for Nonlinear Response Models , 2013 .
[54] Raman K. Mehra,et al. Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .
[55] Michele Meo,et al. On the optimal sensor placement techniques for a bridge structure , 2005 .
[56] Sundeep Prabhakar Chepuri,et al. Sparsity-Promoting Sensor Selection for Non-Linear Measurement Models , 2013, IEEE Transactions on Signal Processing.
[57] Johannes P. Schlöder,et al. Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..
[58] Dennis S. Bernstein,et al. Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory , 2005 .
[59] K. Willcox. Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .
[60] Noel A Cressie,et al. Statistics for Spatio-Temporal Data , 2011 .
[61] I. Yu. Gejadze,et al. On optimal solution error covariances in variational data assimilation problems , 2010, J. Comput. Phys..
[62] I. Gejadze,et al. Analysis error covariance versus posterior covariance in variational data assimilation , 2013 .
[63] I. Yu. Gejadze,et al. On Analysis Error Covariances in Variational Data Assimilation , 2008, SIAM J. Sci. Comput..
[64] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[65] G. Karniadakis,et al. Efficient sensor placement for ocean measurements using low-dimensional concepts , 2009 .
[66] A. Polyanin. Handbook of Linear Partial Differential Equations for Engineers and Scientists , 2001 .
[67] Dimitri P. Bertsekas,et al. Convex Optimization Algorithms , 2015 .
[68] YangQuan Chen,et al. Optimal Observation for Cyber-physical Systems: A Fisher-information-matrix-based Approach , 2009 .