Optimal sensor placement for joint parameter and state estimation problems in large-scale dynamical systems with applications to thermo-mechanics

We consider large-scale dynamical systems in which both the initial state and some parameters are unknown. These unknown quantities must be estimated from partial state observations over a time window. A data assimilation framework is applied for this purpose. Specifically, we focus on large-scale linear systems with multiplicative parameter-state coupling as they arise in the discretization of parametric linear time-dependent partial differential equations. Another feature of our work is the presence of a quantity of interest different from the unknown parameters, which is to be estimated based on the available data. In this setting, we employ a simplicial decomposition algorithm for an optimal sensor placement and set forth formulae for the efficient evaluation of all required quantities. As a guiding example, we consider a thermo-mechanical PDE system with the temperature constituting the system state and the induced displacement at a certain reference point as the quantity of interest.

[1]  Maciej Patan,et al.  D-optimal design of a monitoring network for parameter estimation of distributed systems , 2007, J. Glob. Optim..

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  YangQuan Chen,et al.  Optimal Observation for Cyber-physical Systems , 2009 .

[4]  Kenneth Lange,et al.  Numerical analysis for statisticians , 1999 .

[5]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[6]  I. YU. GEJADZE,et al.  On Computation of the Design Function Gradient for the Sensor-Location Problem in Variational Data Assimilation , 2012, SIAM J. Sci. Comput..

[7]  L. Pronzato,et al.  Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties , 2013 .

[8]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[9]  K. Deimling Nonlinear functional analysis , 1985 .

[10]  E. Haber,et al.  Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems , 2010 .

[11]  I. Yu. Gejadze,et al.  Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics , 2011, J. Comput. Phys..

[12]  Ben G. Fitzpatrick,et al.  Bayesian analysis in inverse problems , 1991 .

[13]  Yaming Yu Monotonic convergence of a general algorithm for computing optimal designs , 2009, 0905.2646.

[14]  A. El Jai,et al.  Sensors and controls in the analysis of distributed systems , 1988 .

[15]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[16]  Georg Stadler,et al.  A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ0-Sparsification , 2013, SIAM J. Sci. Comput..

[17]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..

[18]  Naotake Noda,et al.  Theory of Elasticity and Thermal Stresses , 2013 .

[19]  Melina A. Freitag,et al.  Synergy of inverse problems and data assimilation techniques , 2013 .

[20]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[21]  Roland Herzog,et al.  Sequentially optimal sensor placement in thermoelastic models for real time applications , 2015 .

[22]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[23]  Ting-Hua Yi,et al.  Optimal sensor placement for structural health monitoring based on multiple optimization strategies , 2011 .

[24]  Alexander Y. Sun,et al.  Model Calibration and Parameter Estimation: For Environmental and Water Resource Systems , 2015 .

[25]  Luis Tenorio,et al.  Experimental design in the context of Tikhonov regularized inverse problems , 2013 .

[26]  William Prager,et al.  Theory of Thermal Stresses , 1960 .

[27]  Moritz Diehl,et al.  An approximation technique for robust nonlinear optimization , 2006, Math. Program..

[28]  Ting Kei Pong,et al.  Methods for Optimal Experimental Designs ∗ , 2012 .

[29]  Ionel Michael Navon,et al.  Computational Methods for Data Evaluation and Assimilation , 2019 .

[30]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[31]  E. Rafajłowicz Optimum choice of moving sensor trajectories for distributed-parameter system identification , 1986 .

[32]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[33]  S. Silvey Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .

[34]  Julio R. Banga,et al.  Optimal field reconstruction of distributed process systems from partial measurements , 2007 .

[35]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[36]  A. Armaou,et al.  Optimal actuator/sensor placement for linear parabolic PDEs using spatial H2 norm , 2006 .

[37]  O. Ghattas,et al.  On Bayesian A- and D-optimal experimental designs in infinite dimensions , 2014, 1408.6323.

[38]  Luís N. Vicente Bilevel Programming: Introduction, History and Overview , 2009, Encyclopedia of Optimization.

[39]  Luis Tenorio,et al.  Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems , 2012, Comput. Optim. Appl..

[40]  E. Haber,et al.  Numerical methods for experimental design of large-scale linear ill-posed inverse problems , 2008 .

[41]  Georg Stadler,et al.  A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..

[42]  E. Rafajłowicz Design of experiments for eigenvalue identification in distributed-parameter systems , 1981 .

[43]  Kelly Cohen,et al.  A heuristic approach to effective sensor placement for modeling of a cylinder wake , 2006 .

[44]  Tom Lahmer,et al.  Optimal experimental design for nonlinear ill-posed problems applied to gravity dams , 2011 .

[45]  Carlos S. Kubrusly,et al.  Sensors and controllers location in distributed systems - A survey , 1985, Autom..

[46]  H. Malebranche,et al.  Simultaneous state and parameter estimation and location of sensors for distributed systems , 1988 .

[47]  Julio R. Banga,et al.  Optimal sensor location and reduced order observer design for distributed process systems , 2004, Comput. Chem. Eng..

[48]  Antonio A. Alonso,et al.  Optimal sensor placement for state reconstruction of distributed process systems , 2004 .

[49]  S. Silvey,et al.  An algorithm for optimal designs on a design space , 1978 .

[50]  Johannes P. Schlöder,et al.  A real-time algorithm for moving horizon state and parameter estimation , 2011, Comput. Chem. Eng..

[51]  Dietmar Rempfer,et al.  Optimized sensor placement for urban flow measurement , 2004 .

[52]  Hans Bock,et al.  Efficient moving horizon state and parameter estimation for SMB processes , 2009 .

[53]  Valerii V. Fedorov,et al.  Optimal Design for Nonlinear Response Models , 2013 .

[54]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[55]  Michele Meo,et al.  On the optimal sensor placement techniques for a bridge structure , 2005 .

[56]  Sundeep Prabhakar Chepuri,et al.  Sparsity-Promoting Sensor Selection for Non-Linear Measurement Models , 2013, IEEE Transactions on Signal Processing.

[57]  Johannes P. Schlöder,et al.  Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..

[58]  Dennis S. Bernstein,et al.  Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory , 2005 .

[59]  K. Willcox Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[60]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[61]  I. Yu. Gejadze,et al.  On optimal solution error covariances in variational data assimilation problems , 2010, J. Comput. Phys..

[62]  I. Gejadze,et al.  Analysis error covariance versus posterior covariance in variational data assimilation , 2013 .

[63]  I. Yu. Gejadze,et al.  On Analysis Error Covariances in Variational Data Assimilation , 2008, SIAM J. Sci. Comput..

[64]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[65]  G. Karniadakis,et al.  Efficient sensor placement for ocean measurements using low-dimensional concepts , 2009 .

[66]  A. Polyanin Handbook of Linear Partial Differential Equations for Engineers and Scientists , 2001 .

[67]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[68]  YangQuan Chen,et al.  Optimal Observation for Cyber-physical Systems: A Fisher-information-matrix-based Approach , 2009 .