Analysis of Power Requirement of Agricultural Tractor by Major Field Operation

The purpose of this study was to analyze power requirement of an agricultural tractor by major field operations. First a survey was conducted to obtain annual usage ratio of agricultural tractor by field operation. Plowing, rotary tillage, and loader operations were selected as major field operations of agricultural tractor. Second, a power measurement system was constructed with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. Third, the major field operations were experimented under fields with different soil conditions following planned operation paths. Power requirement was analyzed during the total operation period consisted of actual operation period (plowing, rotary tillage, and loader operations) and period before and after the actual operation (3-point hitch operating, forward and reverse driving, braking, and steering). Power requirement of tractor major components such as driving axle part, PTO part, main hydraulic part, and auxiliary hydraulic part were measured and calculated to determine usage ratio of agricultural tractor power. Results of averaged power requirement for actual field operation and total operation were 23.1 and 17.5 kW, 24.6 and 19.1 kW, and 14.9 and 8.9 kW, respectively, for plowing, rotary tillage, and loader operations. The results showed that rotary tillage required the greatest power among the operations. Averaged power requirement of driving axles, PTO axle, main hydraulic part, and auxiliary part during the actual field operation were 8.1, 7.8, 3.4, and 1.5 kW, respectively, and the total requirement power was about 70 % (20.8 kW) of the rated power. Averaged power requirement of driving axles, PTO axle, main hydraulic, and auxiliary hydraulic for the total operation period were 6.5, 6.0, 2.1, 0.9 kW, respectively, and total requirement power was about 52 % (15.5 kW) of the rated power. Driving axles required the greatest amount of power among the components.