Characterization of β3-adrenergic receptor: determination of pharmacophore and 3D QSAR model for β3 adrenergic receptor agonism

[1]  A Palomer,et al.  Derivation of pharmacophore and CoMFA models for leukotriene D(4) receptor antagonists of the quinolinyl(bridged)aryl series. , 2000, Journal of medicinal chemistry.

[2]  Guillaume,et al.  Localization of the β(beta)3‐adrenoceptor in the human gastrointestinal tract: an immunohistochemical study , 1998, Alimentary pharmacology & therapeutics.

[3]  C. Strader,et al.  Determination of structural domains for G protein coupling and ligand binding in beta 3-adrenergic receptor. , 1995, Molecular pharmacology.

[4]  Asim Kumar Debnath,et al.  Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex dihydrofolate reductase. , 2002, Journal of medicinal chemistry.

[5]  C. Strader,et al.  Substituted oxazole benzenesulfonamides as potent human beta3 adrenergic receptor agonists. , 2000, Bioorganic & medicinal chemistry letters.

[6]  C. Strader,et al.  Discovery of L-755,507: A subnanomolar human β3 adrenergic receptor agonist , 1998 .

[7]  Yvonne C. Martin,et al.  A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists , 1993, J. Comput. Aided Mol. Des..

[8]  N. Sakane,et al.  Trp64Arg mutation of beta3-adrenoceptor gene is associated with diabetic nephropathy in Type II diabetes mellitus. , 1998, Diabetologia.

[9]  J. Arch,et al.  Prospects for beta 3-adrenoceptor agonists in the treatment of obesity and diabetes. , 1996, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity.

[10]  3-D QSAR studies of triazolinone based balanced AT1/AT2 receptor antagonists. , 2001, Bioorganic & medicinal chemistry.

[11]  R. Cooper,et al.  The enzymes involved in biosynthesis of penicillin and cephalosporin; their structure and function. , 1993, Bioorganic & medicinal chemistry.

[12]  M. Akahane,et al.  Relaxant effects of isoproterenol and selective beta3-adrenoceptor agonists on normal, low compliant and hyperreflexic human bladders. , 2001, The Journal of urology.

[13]  R. Miller,et al.  Human beta3 adrenergic receptor agonists containing cyclic ureidobenzenesulfonamides. , 1999, Bioorganic & medicinal chemistry letters.

[14]  K. Koike,et al.  Recent advances in structure, binding sites with ligands and pharmacological function of beta-adrenoceptors obtained by molecular biology and molecular modeling. , 2000, Life sciences.

[15]  Andrew Smellie,et al.  Analysis of Conformational Coverage, 1. Validation and Estimation of Coverage , 1995, J. Chem. Inf. Comput. Sci..

[16]  A. Strosberg Association of β3-adrenoceptor polymorphism with obesity and diabetes: current status , 1997 .

[17]  R. Miller,et al.  Discovery of an orally bioavailable alkyl oxadiazole beta3 adrenergic receptor agonist. , 2000, Bioorganic & medicinal chemistry letters.

[18]  Steven L. Teig,et al.  Chemical Function Queries for 3D Database Search , 1994, J. Chem. Inf. Comput. Sci..

[19]  M. Fisher,et al.  Human beta3 adrenergic receptor agonists containing cyanoguanidine and nitroethylenediamine moieties. , 2001, Bioorganic & medicinal chemistry letters.

[20]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[21]  Antonio Entrena,et al.  Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. , 2002, Journal of medicinal chemistry.

[22]  C. Strader,et al.  Potent, elective human beta3 adrenergic receptor agonists containing a substituted indoline-5-sulfonamide pharmacophore. , 1999, Bioorganic & medicinal chemistry letters.

[23]  G. Colombo,et al.  β 3 -Adrenergic receptor ligands: insight into structure–activity relationships using Monte-Carlo conformational analysis in water , 2001 .

[24]  A. Saxena,et al.  Synthesis, molecular modeling and QSAR studies in chiral 2,3-disubstituted-1,2,3,4-tetrahydro-9H-pyrido(3,4-b)indoles as potential modulators of opioid antinociception. , 2001, Bioorganic & medicinal chemistry.

[25]  Andrew Smellie,et al.  Analysis of Conformational Coverage, 2. Applications of Conformational Models , 1995, J. Chem. Inf. Comput. Sci..

[26]  R. Mulvey,et al.  Novel substituted 4-aminomethylpiperidines as potent and selective human beta3-agonists. Part 2: arylethanolaminomethylpiperidines. , 2002, Bioorganic & medicinal chemistry letters.

[27]  R. Miller,et al.  L-770,644: a potent and selective human beta3 adrenergic receptor agonist with improved oral bioavailability. , 1999, Bioorganic & medicinal chemistry letters.

[28]  Jonas Boström,et al.  Reproducing the conformations of protein-bound ligands: A critical evaluation of several popular conformational searching tools , 2001, J. Comput. Aided Mol. Des..

[29]  Y. He,et al.  Synthesis and human beta-adrenoceptor activity of 1-(3,5-diiodo-4- methoxybenzyl)-1,2,3,4-tetrahydroisoquinolin-6-ol derivatives in vitro. , 2000, Journal of medicinal chemistry.

[30]  A. Saxena,et al.  Molecular Modeling and 3D-QSAR Studies in 2-Aziridinyl-and 2,3-Bis(Aziridinyl)-1,4-Naphthoquinonyl Sulfonate and Acylate Derivatives as Potential Antimalarial Agents , 2001, SAR and QSAR in environmental research.

[31]  C. Cowan,et al.  Synthesis and evaluation of potent and selective beta(3) adrenergic receptor agonists containing acylsulfonamide, sulfonylsulfonamide, and sulfonylurea carboxylic acid isosteres. , 2002, Journal of medicinal chemistry.

[32]  F. Charpentier,et al.  Functional beta3-adrenoceptor in the human heart. , 1996, The Journal of clinical investigation.

[33]  P. Miller,et al.  Self-efficacy in overweight individuals with binge eating disorder. , 1999, Obesity research.

[34]  D. Miller,et al.  2-Amino-4-benzyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridines: novel selective beta3-adrenoceptor agonists. , 1999, Journal of medicinal chemistry.

[35]  R. Miller,et al.  Discovery of a potent, orally bioavailable beta(3) adrenergic receptor agonist, (R)-N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4 -[4-(trifluoromethyl)phenyl]thiazol-2-yl]benzenesulfonamide. , 2000, Journal of medicinal chemistry.

[36]  Asim Kumar Debnath,et al.  Generation of predictive pharmacophore models for CCR5 antagonists: study with piperidine- and piperazine-based compounds as a new class of HIV-1 entry inhibitors. , 2003, Journal of medicinal chemistry.

[37]  M. Tisdale,et al.  Role of β3-adrenergic receptors in the action of a tumour lipid mobilizing factor , 2002, British Journal of Cancer.

[38]  Philip Prathipati,et al.  Development of 3D-QSAR models for 5-lipoxygenase antagonists: chalcones. , 2002, Bioorganic & medicinal chemistry.

[39]  A. Strosberg,et al.  Site-directed mutagenesis of the human beta3-adrenoceptor--transmembrane residues involved in ligand binding and signal transduction. , 1998, European journal of biochemistry.

[40]  Rolf W Hartmann,et al.  Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy. , 2003, Journal of medicinal chemistry.

[41]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[42]  J. Cheng,et al.  Activation of beta3-adrenoceptors by exogenous dopamine to lower glucose uptake into rat adipocytes. , 1998, Journal of the autonomic nervous system.

[43]  Terry P Lybrand,et al.  Three-dimensional models for beta-adrenergic receptor complexes with agonists and antagonists. , 2003, Journal of medicinal chemistry.

[44]  A. Saxena,et al.  Synthesis and QSAR studies in 2-(N-aryl-N-aroyl)amino-4,5-dihydrothiazole derivatives as potential antithrombotic agents. , 2001, Bioorganic & medicinal chemistry.

[45]  Thierry Langer,et al.  On the Use of Chemical Function-Based Alignments as Input for 3D-QSAR , 1998, J. Chem. Inf. Comput. Sci..

[46]  Andrew R. Leach,et al.  A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP , 2002, J. Comput. Aided Mol. Des..

[47]  J. Himms-Hagen,et al.  Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. , 1997, Biochemical pharmacology.

[48]  M. Sennitt,et al.  Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs , 1984, Nature.

[49]  R. Mulvey,et al.  (4-Piperidin-1-yl)phenyl amides: potent and selective human beta(3) agonists. , 2001, Journal of medicinal chemistry.

[50]  K. Andersson,et al.  Functional and molecular biological evidence for a possible β3‐adrenoceptor in the human detrusor muscle , 1999, British journal of pharmacology.

[51]  R. Fremeau,et al.  Distribution of β3-adrenoceptor mRNA in human tissues , 1995 .

[52]  R. L. Dow β3-adrenergic agonists: potential therapeutics for obesity , 1997 .

[53]  C. Weyer,et al.  Development of β3‐adrenoceptor agonists as antiobesity and antidiabetes drugs in humans: Current status and future prospects , 2000 .

[54]  D. Osguthorpe,et al.  Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system , 1988, Proteins.

[55]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[56]  M. Letizia Barreca,et al.  Pharmacophore Modeling as an Efficient Tool in the Discovery of Novel Noncompetitive AMPA Receptor Antagonists , 2003, J. Chem. Inf. Comput. Sci..

[57]  P. Sprague Automated chemical hypothesis generation and database searching with Catalyst , 1995 .

[58]  A K Saxena,et al.  Comparison of MLR, PLS and GA-MLR in QSAR analysis* , 2003, SAR and QSAR in environmental research.

[59]  A. Saxena,et al.  Development of 3D-QSAR models in cyclic ureidobenzenesulfonamides: human beta3-adrenergic receptor agonist. , 2003, Bioorganic & medicinal chemistry letters.

[60]  M. Fisher,et al.  Tetrahydroisoquinoline derivatives containing a benzenesulfonamide moiety as potent, selective human beta3 adrenergic receptor agonists. , 2000, Bioorganic & medicinal chemistry letters.

[61]  Philip Kraft,et al.  Odds and Trends: Recent Developments in the Chemistry of Odorants , 2000 .

[62]  H. Mukaiyama,et al.  Discovery of novel N-phenylglycine derivatives as potent and selective beta(3)-adrenoceptor agonists for the treatment of frequent urination and urinary incontinence. , 2001, Journal of medicinal chemistry.

[63]  E. Horton,et al.  CL-316,243, a β3-Specific Adrenoceptor Agonist, Enhances Insulin-Stimulated Glucose Disposal in Nonobese Rats , 1997, Diabetes.

[64]  Jana Sopkova-de Oliveira Santos,et al.  Association of Two 3D QSAR Analyses. Application to the Study of Partial Agonist Serotonin-3 Ligands , 2001, J. Chem. Inf. Comput. Sci..

[65]  Pavel Hobza,et al.  Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree–Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree–Fock results , 1997 .

[66]  K. Clément,et al.  Genetic Variation in the β3-Adrenergic Receptor and an Increased Capacity to Gain Weight in Patients with Morbid Obesity , 1995 .