Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival.

[1]  M. Karsdal,et al.  Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. , 2004, The American journal of pathology.

[2]  Kim Henriksen,et al.  Transforming Growth Factor-β Controls Human Osteoclastogenesis through the p38 MAPK and Regulation of RANK Expression* , 2003, Journal of Biological Chemistry.

[3]  Sun Li,et al.  Ca(2+) influx through the osteoclastic plasma membrane ryanodine receptor. , 2002, American journal of physiology. Renal physiology.

[4]  E. Lanino,et al.  Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment , 2005, Journal of Medical Genetics.

[5]  H. Datta,et al.  The effect of extracellular calcium elevation on morphology and function of isolated rat osteoclasts , 1989, Bioscience reports.

[6]  M. C. Ovejero,et al.  The Chloride Channel Inhibitor NS3736 Prevents Bone Resorption in Ovariectomized Rats Without Changing Bone Formation , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[7]  H. Datta,et al.  Scanning Electrochemical Microscopy at the Surface of Bone‐Resorbing Osteoclasts: Evidence for Steady‐State Disposal and Intracellular Functional Compartmentalization of Calcium , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[8]  H. Väänänen,et al.  The cell biology of osteoclast function. , 2000, Journal of cell science.

[9]  M. Naassila,et al.  High extracellular calcium concentrations directly stimulate osteoclast apoptosis. , 2000, Biochemical and biophysical research communications.

[10]  M. Zaidi,et al.  A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing. , 1995, The Journal of clinical investigation.

[11]  Yuqiong Liang,et al.  Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification , 1999, Nature Genetics.

[12]  A. Schulz,et al.  Loss of the ClC-7 Chloride Channel Leads to Osteopetrosis in Mice and Man , 2001, Cell.

[13]  R. Baron,et al.  Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border , 1985, The Journal of cell biology.

[14]  J. Iwamoto,et al.  Response of cortical and cancellous bones to mild calcium deficiency in young growing female rats: a bone histomorphometry study. , 2004, Experimental animals.

[15]  L. Mosekilde,et al.  Ultrastructural investigations of bone resorptive cells in two types of autosomal dominant osteopetrosis. , 1993, Bone.

[16]  L. Fitzpatrick,et al.  Direct effect of calcium channel antagonists on osteoclast function: alterations in bone resorption and intracellular calcium concentrations. , 1994, Endocrinology.

[17]  L. Notarangelo,et al.  Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis , 2000, Nature Genetics.

[18]  M. Karsdal,et al.  Degradation of the Organic Phase of Bone by Osteoclasts: A Secondary Role for Lysosomal Acidification , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[19]  H. Datta,et al.  'Calcium-activated' intracellular calcium elevation: a novel mechanism of osteoclast regulation. , 1989, Biochemical and biophysical research communications.

[20]  I A Silver,et al.  Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. , 1988, Experimental cell research.

[21]  J. Bollerslev,et al.  Collagen metabolism in two types of autosomal dominant osteopetrosis during stimulation with thyroid hormones. , 1995, European journal of endocrinology.

[22]  M. Karsdal,et al.  Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. , 2005, The American journal of pathology.