A Cantor-Bernstein-type theorem for spanning trees in infinite graphs
暂无分享,去创建一个
J. Pascal Gollin | Joshua Erde | Max Pitz | Paul Knappe | Atilla Joó | Joshua Erde | Max Pitz | J. P. Gollin | Paul Knappe | Atilla Jo'o
[1] Carsten Thomassen,et al. Infinite, highly connected digraphs with no two arc-disjoint spanning trees , 1989, J. Graph Theory.
[2] Lajos Soukup,et al. Elementary submodels in infinite combinatorics , 2010, Discret. Math..
[3] J. Pascal Gollin,et al. Base Partition for Mixed Families of Finitary and Cofinitary Matroids , 2021, Comb..
[4] Reinhard Diestel,et al. Graph Theory , 1997 .
[5] Christian Reiher,et al. The Colouring Number of Infinite Graphs , 2015, Combinatorica.
[6] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .
[7] François Laviolette,et al. Decompositions of infinite graphs: I - bond-faithful decompositions , 2005, J. Comb. Theory B.
[8] C. Nash-Williams. Decomposition of Finite Graphs Into Forests , 1964 .
[9] A. Hajnal,et al. On decomposition of graphs , 1967 .
[10] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.