On sequential Monte Carlo, partial rejection control and approximate Bayesian computation

We present a variant of the sequential Monte Carlo sampler by incorporating the partial rejection control mechanism of Liu (2001). We show that the resulting algorithm can be considered as a sequential Monte Carlo sampler with a modified mutation kernel. We prove that the new sampler can reduce the variance of the incremental importance weights when compared with standard sequential Monte Carlo samplers, and provide a central limit theorem. Finally, the sampler is adapted for application under the challenging approximate Bayesian computation modelling framework.

[1]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[2]  T. Mack Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates , 1993, ASTIN Bulletin.

[3]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[4]  M. West Approximating posterior distributions by mixtures , 1993 .

[5]  M. P. Wand,et al.  Generalised linear mixed model analysis via sequential Monte Carlo sampling , 2008, 0810.1163.

[6]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[7]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[8]  A. Doucet,et al.  A survey of convergence results on particle ltering for practitioners , 2002 .

[9]  P. Fearnhead,et al.  Particle filters for partially observed diffusions , 2007, 0710.4245.

[10]  P. Protter,et al.  The Monte-Carlo method for filtering with discrete-time observations , 2001 .

[11]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[12]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[13]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[14]  H. Kunsch Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.

[15]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.

[16]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[17]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[18]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[19]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[20]  P. Moral,et al.  Sequential Monte Carlo samplers for rare events , 2006 .

[21]  F. LeGland,et al.  Stability and approximation of nonlinear filters in the Hilbert metric, and application to particle filters , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[22]  Feng Qi,et al.  Several integral inequalities. , 1999 .

[23]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[24]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[25]  Bogdan Gavrea,et al.  On Some Integral Inequalities , 2008 .

[26]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[27]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[28]  P. Moral Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems , 1998 .

[29]  S. Sisson,et al.  Likelihood-free Markov chain Monte Carlo , 2010, 1001.2058.

[30]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[31]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[32]  F. Gland,et al.  STABILITY AND UNIFORM APPROXIMATION OF NONLINEAR FILTERS USING THE HILBERT METRIC AND APPLICATION TO PARTICLE FILTERS1 , 2004 .

[33]  A. Doucet,et al.  A note on auxiliary particle filters , 2008 .

[34]  Gareth W. Peters,et al.  Chain ladder method: Bayesian bootstrap versus classical bootstrap , 2010 .

[35]  Alois Gisler,et al.  Credibility for the Chain Ladder Reserving Method , 2008 .

[36]  Jun S. Liu,et al.  Rejection Control and Sequential Importance Sampling , 1998 .

[37]  Joseph Fourier,et al.  Approximate Bayesian Computation: a non-parametric perspective , 2013 .

[38]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[39]  Paul Fearnhead,et al.  An Adaptive Sequential Monte Carlo Sampler , 2010, 1005.1193.

[40]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[41]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[43]  Nadia Oudjane,et al.  A sequential particle algorithm that keeps the particle system alive , 2005, 2005 13th European Signal Processing Conference.

[44]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[45]  M. Merz,et al.  Stochastic Claims Reserving Methods in Insurance , 2008 .

[46]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[47]  J. Marin,et al.  Adaptivity for ABC algorithms: the ABC-PMC scheme , 2008 .

[48]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[49]  N. Chopin A sequential particle filter method for static models , 2002 .

[50]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[51]  Arnaud Doucet,et al.  Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition , 2008 .

[52]  Eric Moulines,et al.  Adaptive methods for sequential importance sampling with application to state space models , 2008, 2008 16th European Signal Processing Conference.

[53]  Nando de Freitas,et al.  Toward Practical N2 Monte Carlo: the Marginal Particle Filter , 2005, UAI.

[54]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.