Computational schemes for non-linear elasto-dynamics
暂无分享,去创建一个
[1] C. Lanczos. The variational principles of mechanics , 1949 .
[2] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[3] L. E. Malvern. Introduction to the mechanics of a continuous medium , 1969 .
[4] Thomas J. R. Hughes,et al. Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .
[5] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[6] Claes Johnson,et al. On the convergence of a finite element method for a nonlinear hyperbolic conservation law , 1987 .
[7] T. Hughes,et al. Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .
[8] F. B. Ellerby,et al. Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.
[9] Thomas J. R. Hughes,et al. Space-time finite element methods for second-order hyperbolic equations , 1990 .
[10] J. C. Simo,et al. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .
[11] Jintai Chung,et al. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .
[12] O. Bauchau,et al. Numerical integration of non‐linear elastic multi‐body systems , 1995 .