Dimensionality-driven orthorhombic MoTe 2 at room temperature

We use a combination of Raman spectroscopy and transport measurements to study thin flakes of the type-II Weyl semimetal candidate MoTe2 protected from oxidation. In contrast to bulk crystals, which undergo a phase transition from monoclinic to the inversion symmetry breaking, orthorhombic phase below ~250 K, we find that in moderately thin samples below ~12 nm, a single orthorhombic phase exists up to and beyond room temperature. This could be due to the effect of c-axis confinement, which lowers the energy of an out-of-plane hole band and stabilizes the orthorhombic structure. Our results suggest that Weyl nodes, predicated upon inversion symmetry breaking, may be observed in thin MoTe2 at room temperature.

[1]  E. Reed,et al.  Structural phase transition in monolayer MoTe2 driven by electrostatic doping , 2017, Nature.

[2]  Long-qing Chen,et al.  Tuning Phase Transitions in 1T-TaS2 via the Substrate. , 2017, Nano letters.

[3]  Albert V. Davydov,et al.  The structural phases and vibrational properties of Mo1−xWxTe2 alloys , 2017, 2d materials.

[4]  Kang L. Wang,et al.  Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals , 2017, Scientific Reports.

[5]  I. Hamada,et al.  Origins of the structural phase transitions in MoTe 2 and WTe 2 , 2017, 1702.04509.

[6]  Y. Sun,et al.  Extremely large magnetoresistance in the type-II Weyl semimetal Mo Te 2 , 2016, 1706.03356.

[7]  Pinshane Y. Huang,et al.  Engineering the Structural and Electronic Phases of MoTe2 through W Substitution. , 2016, Nano letters.

[8]  Jun Yan,et al.  Activation of New Raman Modes by Inversion Symmetry Breaking in Type II Weyl Semimetal Candidate T'-MoTe2. , 2016, Nano letters.

[9]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[10]  Jia-An Yan,et al.  Interlayer breathing and shear modes in NbSe2 atomic layers , 2016, 1607.04925.

[11]  L. Balicas,et al.  Hall effect within the colossal magnetoresistive semimetallic state of MoTe 2 , 2016, 1607.03330.

[12]  Ji Feng,et al.  Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2 , 2016, Nature Communications.

[13]  A. Davydov,et al.  Phonon Anharmonicity in Bulk T d -MoTe2. , 2016, Applied physics letters.

[14]  L. Balicas,et al.  Bulk Fermi surface of the Weyl type-II semimetallic candidate NbIrTe 4 , 2016, 1605.09065.

[15]  Timur K. Kim,et al.  Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe 2 , 2016, 1604.08228.

[16]  Z. J. Wang,et al.  Discovery of Weyl semimetal state violating Lorentz invariance in MoTe2 , 2016, 1604.02116.

[17]  C. Felser,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.

[18]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[19]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[20]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[21]  A. Pasupathy,et al.  Distinct surface and bulk charge density waves in ultrathin 1 T − Ta S 2 , 2016, 1603.02110.

[22]  J Zhang,et al.  Td-MoTe2: A possible topological superconductor , 2016, 1602.01549.

[23]  Yunseok Kim,et al.  Room Temperature Semiconductor-Metal Transition of MoTe2 Thin Films Engineered by Strain. , 2016, Nano letters.

[24]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[25]  A. Wysmołek,et al.  Raman scattering of few-layers MoTe2 , 2015, 1511.07184.

[26]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[27]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[28]  P. Kim,et al.  Nature of the quantum metal in a two-dimensional crystalline superconductor , 2015, Nature Physics.

[29]  L. Kourkoutis,et al.  Structure and control of charge density waves in two-dimensional 1T-TaS2 , 2015, Proceedings of the National Academy of Sciences.

[30]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[31]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[32]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[33]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[34]  R. Clarke,et al.  A low-temperature structural phase transition in β-MoTe2 , 1978 .

[35]  R. Friend,et al.  Electrical resistivity anomaly in β-MoTe2 (metallic behaviour) , 1978 .

[36]  R. D. Jonge,et al.  Semiconductor to metal transition in MoTe2 , 1970 .

[37]  B. E. Brown The crystal structures of WTe2 and high‐temperature MoTe2 , 1966 .

[38]  Albert V. Davydov,et al.  Evolution of Raman spectra in Mo 1 − x W x Te 2 alloys , 2017 .

[39]  W. Marsden I and J , 2012 .